Nejvíce citovaný článek - PubMed ID 14734323
BACKGROUND: Genome size evolution is a complex process influenced by polyploidization, satellite DNA accumulation, and expansion of retroelements. How this process could be affected by different reproductive strategies is still poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed differences in the number and distribution of major repetitive DNA elements in two closely related species, Silene latifolia and S. vulgaris. Both species are diploid and possess the same chromosome number (2n = 24), but differ in their genome size and mode of reproduction. The dioecious S. latifolia (1C = 2.70 pg DNA) possesses sex chromosomes and its genome is 2.5× larger than that of the gynodioecious S. vulgaris (1C = 1.13 pg DNA), which does not possess sex chromosomes. We discovered that the genome of S. latifolia is larger mainly due to the expansion of Ogre retrotransposons. Surprisingly, the centromeric STAR-C and TR1 tandem repeats were found to be more abundant in S. vulgaris, the species with the smaller genome. We further examined the distribution of major repetitive sequences in related species in the Caryophyllaceae family. The results of FISH (fluorescence in situ hybridization) on mitotic chromosomes with the Retand element indicate that large rearrangements occurred during the evolution of the Caryophyllaceae family. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate that the evolution of genome size in the genus Silene is accompanied by the expansion of different repetitive elements with specific patterns in the dioecious species possessing the sex chromosomes.
- MeSH
- chromozomy rostlin MeSH
- délka genomu * MeSH
- genetická variace MeSH
- genom rostlinný MeSH
- genomika MeSH
- hybridizace in situ fluorescenční MeSH
- hybridizace nukleových kyselin MeSH
- Magnoliopsida genetika MeSH
- mikrosatelitní repetice genetika MeSH
- modely genetické MeSH
- molekulární evoluce MeSH
- polyploidie MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- rostlinné geny MeSH
- rostlinné proteiny genetika MeSH
- satelitní DNA genetika MeSH
- Silene klasifikace genetika MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rostlinné proteiny MeSH
- satelitní DNA MeSH
We carried out a global survey of all major types of transposable elements in Silene latifolia, a model species with sex chromosomes that are in the early stages of their evolution. A shotgun genomic library was screened with genomic DNA to isolate and characterize the most abundant elements. We found that the most common types of elements were the subtelomeric tandem repeat X-43.1 and Gypsy retrotransposons, followed by Copia retrotransposons and LINE non-LTR elements. SINE elements and DNA transposons were less abundant. We also amplified transposable elements with degenerate primers and used them to screen the library. The localization of elements by FISH revealed that most of the Copia elements were accumulated on the Y chromosome. Surprisingly, one type of Gypsy element, which was similar to Ogre elements known from legumes, was almost absent on the Y chromosome but otherwise uniformly distributed on all chromosomes. Other types of elements were ubiquitous on all chromosomes. Moreover, we isolated and characterized two new tandem repeats. One of them, STAR-C, was localized at the centromeres of all chromosomes except the Y chromosome, where it was present on the p-arm. Its variant, STAR-Y, carrying a small deletion, was specifically localized on the q-arm of the Y chromosome. The second tandem repeat, TR1, co-localized with the 45S rDNA cluster in the subtelomeres of five pairs of autosomes. FISH analysis of other Silene species revealed that some elements (e.g., Ogre-like elements) are confined to the section Elisanthe while others (e.g. Copia or Athila-like elements) are present also in more distant species. Similarly, the centromeric satellite STAR-C was conserved in the genus Silene whereas the subtelomeric satellite X-43.1 was specific for Elisanthe section. Altogether, our data provide an overview of the repetitive sequences in Silene latifolia and revealed that genomic distribution and evolutionary dynamics differ among various repetitive elements. The unique pattern of repeat distribution is found on the Y chromosome, where some elements are accumulated while other elements are conspicuously absent, which probably reflects different forces shaping the Y chromosome.
- MeSH
- chromozomy rostlin genetika MeSH
- DNA rostlinná genetika MeSH
- druhová specificita MeSH
- hybridizace in situ fluorescenční MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- Silene klasifikace genetika MeSH
- tandemové repetitivní sekvence genetika MeSH
- transpozibilní elementy DNA genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- transpozibilní elementy DNA MeSH
Sex chromosomes in mammals are about 300 million years old and typically have a highly degenerated Y chromosome. The sex chromosomes in the dioecious plant Silene latifolia in contrast, represent an early stage of evolution in which functional X-Y gene pairs are still frequent. In this study, we characterize a novel tandem repeat called TRAYC, which has accumulated on the Y chromosome in S. latifolia. Its presence demonstrates that processes of satellite accumulation are at work even in this early stage of sex chromosome evolution. The presence of TRAYC in other species of the Elisanthe section suggests that this repeat had spread after the sex chromosomes evolved but before speciation within this section. TRAYC possesses a palindromic character and a strong potential to form secondary structures, which could play a role in satellite evolution. TRAYC accumulation is most prominent near the centromere of the Y chromosome. We propose a role for the centromere as a starting point for the cessation of recombination between the X and Y chromosomes.
- MeSH
- chromozom Y genetika MeSH
- DNA primery genetika MeSH
- DNA rostlinná chemie genetika MeSH
- druhová specificita MeSH
- hybridizace in situ fluorescenční MeSH
- konformace nukleové kyseliny MeSH
- molekulární evoluce * MeSH
- molekulární sekvence - údaje MeSH
- pohlavní chromozomy genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční homologie nukleových kyselin MeSH
- Silene klasifikace genetika MeSH
- tandemové repetitivní sekvence MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA primery MeSH
- DNA rostlinná MeSH
In this paper we describe a pair of novel Ty3/gypsy retrotransposons isolated from the dioecious plant Silene latifolia, consisting of a non-autonomous element Retand-1 (3.7 kb) and its autonomous partner Retand-2 (11.1 kb). These two elements have highly similar long terminal repeat (LTR) sequences but differ in the presence of the typical retroelement coding regions (gag-pol genes), most of which are missing in Retand-1. Moreover, Retand-2 contains two additional open reading frames in antisense orientation localized between the pol gene and right LTR. Retand transcripts were detected in all organs tested (leaves, flower buds and roots) which, together with the high sequence similarity of LTRs in individual elements, indicates their recent transpositional activity. The autonomous elements are similarly abundant (2,700 copies) as non-autonomous ones (2,100 copies) in S. latifolia genome. Retand elements are also present in other Silene species, mostly in subtelomeric heterochromatin regions of all chromosomes. The only exception is the subtelomere of the short arm of the Y chromosome in S. latifolia which is known to lack the terminal heterochromatin. An interesting feature of the Retand elements is the presence of a tandem repeat sequence, which is more amplified in the non-autonomous Retand-1.
- MeSH
- chromozomy rostlin genetika MeSH
- DNA rostlinná metabolismus MeSH
- genetická transkripce MeSH
- genom rostlinný genetika MeSH
- koncové repetice genetika MeSH
- molekulární sekvence - údaje MeSH
- rekombinantní proteiny genetika MeSH
- retroelementy genetika MeSH
- sekvence nukleotidů MeSH
- Silene genetika MeSH
- Southernův blotting MeSH
- tandemové repetitivní sekvence genetika MeSH
- telomery genetika MeSH
- transkripční faktory genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- mdg4 protein (gypsy) MeSH Prohlížeč
- rekombinantní proteiny MeSH
- retroelementy MeSH
- transkripční faktory MeSH