Nejvíce citovaný článek - PubMed ID 15036162
Engineered small non-antibody protein scaffolds are a promising alternative to antibodies and are especially attractive for use in protein therapeutics and diagnostics. The advantages include smaller size and a more robust, single-domain structural framework with a defined binding surface amenable to mutation. This calls for a more systematic approach in designing new scaffolds suitable for use in one or more methods of directed evolution. We hereby describe a process based on an analysis of protein structures from the Protein Data Bank and their experimental examination. The candidate protein scaffolds were subjected to a thorough screening including computational evaluation of the mutability, and experimental determination of their expression yield in E. coli, solubility, and thermostability. In the next step, we examined several variants of the candidate scaffolds including their wild types and alanine mutants. We proved the applicability of this systematic procedure by selecting a monomeric single-domain human protein with a fold different from previously known scaffolds. The newly developed scaffold, called ProBi (Protein Binder), contains two independently mutable surface patches. We demonstrated its functionality by training it as a binder against human interleukin-10, a medically important cytokine. The procedure yielded scaffold-related variants with nanomolar affinity.
- Klíčová slova
- computational saturation, directed evolution, interleukin-10, protein engineering, protein scaffold, ribosome display,
- MeSH
- databáze proteinů MeSH
- interleukin-10 metabolismus MeSH
- konformace proteinů MeSH
- počítačová simulace MeSH
- proteinové inženýrství MeSH
- proteiny chemie genetika metabolismus MeSH
- rekombinantní proteiny chemie genetika metabolismus MeSH
- ribozomy metabolismus MeSH
- řízená evoluce molekul metody MeSH
- sekvence aminokyselin MeSH
- stabilita proteinů MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- interleukin-10 MeSH
- proteiny MeSH
- rekombinantní proteiny MeSH
We describe a computer-based protocol to design protein mutations increasing binding affinity between ligand and its receptor. The method was applied to mutate interferon-γ receptor 1 (IFN-γ-Rx) to increase its affinity to natural ligand IFN-γ, protein important for innate immunity. We analyzed all four available crystal structures of the IFN-γ-Rx/IFN-γ complex to identify 40 receptor residues forming the interface with IFN-γ. For these 40 residues, we performed computational mutation analysis by substituting each of the interface receptor residues by the remaining standard amino acids. The corresponding changes of the free energy were calculated by a protocol consisting of FoldX and molecular dynamics calculations. Based on the computed changes of the free energy and on sequence conservation criteria obtained by the analysis of 32 receptor sequences from 19 different species, we selected 14 receptor variants predicted to increase the receptor affinity to IFN-γ. These variants were expressed as recombinant proteins in Escherichia coli, and their affinities to IFN-γ were determined experimentally by surface plasmon resonance (SPR). The SPR measurements showed that the simple computational protocol succeeded in finding two receptor variants with affinity to IFN-γ increased about fivefold compared to the wild-type receptor.
- MeSH
- interferon gama chemie genetika metabolismus MeSH
- lidé MeSH
- povrchová plasmonová rezonance MeSH
- receptor interferonu gama MeSH
- receptory interferonů chemie genetika metabolismus MeSH
- sbalování proteinů * MeSH
- simulace molekulární dynamiky * MeSH
- substituce aminokyselin MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- IFNG protein, human MeSH Prohlížeč
- interferon gama MeSH
- receptory interferonů MeSH