Nejvíce citovaný článek - PubMed ID 15466568
The evolutionary trajectory of Methylophilaceae includes habitat transitions from freshwater sediments to freshwater and marine pelagial that resulted in genome reduction (genome-streamlining) of the pelagic taxa. However, the extent of genetic similarities in the genomic structure and microdiversity of the two genome-streamlined pelagic lineages (freshwater "Ca. Methylopumilus" and the marine OM43 lineage) has so far never been compared. Here, we analyzed complete genomes of 91 "Ca. Methylopumilus" strains isolated from 14 lakes in Central Europe and 12 coastal marine OM43 strains. The two lineages showed a remarkable niche differentiation with clear species-specific differences in habitat preference and seasonal distribution. On the other hand, we observed a synteny preservation in their genomes by having similar locations and types of flexible genomic islands (fGIs). Three main fGIs were identified: a replacement fGI acting as phage defense, an additive fGI harboring metabolic and resistance-related functions, and a tycheposon containing nitrogen-, thiamine-, and heme-related functions. The fGIs differed in relative abundances in metagenomic datasets suggesting different levels of variability ranging from strain-specific to population-level adaptations. Moreover, variations in one gene seemed to be responsible for different growth at low substrate concentrations and a potential biogeographic separation within one species. Our study provides a first insight into genomic microdiversity of closely related taxa within the family Methylophilaceae and revealed remarkably similar dynamics involving mobile genetic elements and recombination between freshwater and marine family members.
- Klíčová slova
- Methylophilaceae, cultivation, genome-streamlined bacteria, genomic islands, genomic microdiversity, genomics,
- MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- genomové ostrovy MeSH
- jezera MeSH
- Methylophilaceae * MeSH
- Publikační typ
- časopisecké články MeSH
Despite the development of several cultivation methods, the rate of discovery of microorganisms that are yet-to-be cultivated outpaces the rate of isolating and cultivating novel species in the laboratory. Furthermore, no current cultivation technique is capable of selectively isolating and cultivating specific bacterial taxa or phylogenetic groups independently of morphological or physiological properties. Here, we developed a new method to isolate living bacteria solely based on their 16S rRNA gene sequence. We showed that bacteria can survive a modified version of the standard fluorescence in situ hybridization (FISH) procedure, in which fixation is omitted and other factors, such as centrifugation and buffers, are optimized. We also demonstrated that labelled DNA probes can be introduced into living bacterial cells by means of chemical transformation and that specific hybridization occurs. This new method, which we call live-FISH, was then combined with fluorescence-activated cell sorting (FACS) to sort specific taxonomic groups of bacteria from a mock and natural bacterial communities and subsequently culture them. Live-FISH represents the first attempt to systematically optimize conditions known to affect cell viability during FISH and then to sort bacterial cells surviving the procedure. No sophisticated probe design is required, making live-FISH a straightforward method to be potentially used in combination with other single-cell techniques and for the isolation and cultivation of new microorganisms.
- MeSH
- Bacillus genetika MeSH
- Bacteria genetika MeSH
- bakteriální RNA genetika MeSH
- DNA sondy MeSH
- fylogeneze MeSH
- hybridizace in situ fluorescenční * MeSH
- mikrobiologické techniky * MeSH
- průtoková cytometrie MeSH
- RNA ribozomální 16S genetika MeSH
- separace buněk * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální RNA MeSH
- DNA sondy MeSH
- RNA ribozomální 16S MeSH
The most abundant aquatic microbes are small in cell and genome size. Genome-streamlining theory predicts gene loss caused by evolutionary selection driven by environmental factors, favouring superior competitors for limiting resources. However, evolutionary histories of such abundant, genome-streamlined microbes remain largely unknown. Here we reconstruct the series of steps in the evolution of some of the most abundant genome-streamlined microbes in freshwaters ("Ca. Methylopumilus") and oceans (marine lineage OM43). A broad genomic spectrum is visible in the family Methylophilaceae (Betaproteobacteria), from sediment microbes with medium-sized genomes (2-3 Mbp genome size), an occasionally blooming pelagic intermediate (1.7 Mbp), and the most reduced pelagic forms (1.3 Mbp). We show that a habitat transition from freshwater sediment to the relatively oligotrophic pelagial was accompanied by progressive gene loss and adaptive gains. Gene loss has mainly affected functions not necessarily required or advantageous in the pelagial or is encoded by redundant pathways. Likewise, we identified genes providing adaptations to oligotrophic conditions that have been transmitted horizontally from pelagic freshwater microbes. Remarkably, the secondary transition from the pelagial of lakes to the oceans required only slight modifications, i.e., adaptations to higher salinity, gained via horizontal gene transfer from indigenous microbes. Our study provides first genomic evidence of genome reduction taking place during habitat transitions. In this regard, the family Methylophilaceae is an exceptional model for tracing the evolutionary history of genome streamlining as such a collection of evolutionarily related microbes from different habitats is rare in the microbial world.
- MeSH
- délka genomu MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- fyziologická adaptace MeSH
- genom bakteriální * MeSH
- geologické sedimenty mikrobiologie MeSH
- jezera mikrobiologie MeSH
- Methylophilaceae klasifikace genetika izolace a purifikace fyziologie MeSH
- molekulární evoluce MeSH
- mořská voda mikrobiologie MeSH
- přenos genů horizontální MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Methylotrophic planktonic bacteria fulfill a particular role in the carbon cycle of lakes via the turnover of single-carbon compounds. We studied two planktonic freshwater lineages (LD28 and PRD01a001B) affiliated with Methylophilaceae (Betaproteobacteria) in Lake Zurich, Switzerland, by a combination of molecular and cultivation-based approaches. Their spatio-temporal distribution was monitored at high resolution (n=992 samples) for 4 consecutive years. LD28 methylotrophs constituted up to 11 × 10(7) cells l(-1) with pronounced peaks in spring and autumn-winter, concomitant with blooms of primary producers. They were rare in the warm water layers during summer but abundant in the cold hypolimnion, hinting at psychrophilic growth. Members of the PRD01a001B lineage were generally less abundant but also had maxima in spring. More than 120 axenic strains from these so far uncultivated lineages were isolated from the pelagic zone by dilution to extinction. Phylogenetic analysis separated isolates into two distinct genotypes. Isolates grew slowly (μmax=0.4 d(-1)), were of conspicuously small size, and were indeed psychrophilic, with higher growth yield at low temperatures. Growth was enhanced upon addition of methanol and methylamine to sterile lake water. Genomic analyses of two strains confirmed a methylotrophic lifestyle with a reduced set of genes involved in C1 metabolism. The very small and streamlined genomes (1.36 and 1.75 Mb) shared several pathways with the marine OM43 lineage. As the closest described taxa (Methylotenera sp.) are only distantly related to either set of isolates, we propose a new genus with two species, that is, 'Candidatus Methylopumilus planktonicus' (LD28) and 'Candidatus Methylopumilus turicensis' (PRD01a001B).
- MeSH
- Betaproteobacteria genetika MeSH
- DNA bakterií genetika MeSH
- ekologie MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- genotyp MeSH
- jezera mikrobiologie MeSH
- koloběh uhlíku * MeSH
- methanol chemie MeSH
- Methylophilaceae klasifikace genetika MeSH
- mikrobiologie vody MeSH
- nízká teplota MeSH
- plankton genetika MeSH
- pravděpodobnostní funkce MeSH
- reprodukovatelnost výsledků MeSH
- ribozomální DNA genetika MeSH
- RNA ribozomální 16S genetika MeSH
- roční období MeSH
- sekvenční analýza DNA MeSH
- sladká voda chemie mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Švýcarsko MeSH
- Názvy látek
- DNA bakterií MeSH
- methanol MeSH
- ribozomální DNA MeSH
- RNA ribozomální 16S MeSH