Nejvíce citovaný článek - PubMed ID 15485912
Canonical mRNA translation in eukaryotes begins with the formation of the 43S pre-initiation complex (PIC). Its assembly requires binding of initiator Met-tRNAiMet and several eukaryotic initiation factors (eIFs) to the small ribosomal subunit (40S). Compared to their mammalian hosts, trypanosomatids present significant structural differences in their 40S, suggesting substantial variability in translation initiation. Here, we determine the structure of the 43S PIC from Trypanosoma cruzi, the parasite causing Chagas disease. Our structure shows numerous specific features, such as the variant eIF3 structure and its unique interactions with the large rRNA expansion segments (ESs) 9S, 7S, and 6S, and the association of a kinetoplastid-specific DDX60-like helicase. It also reveals the 40S-binding site of the eIF5 C-terminal domain and structures of key terminal tails of several conserved eIFs underlying their activities within the PIC. Our results are corroborated by glutathione S-transferase (GST) pull-down assays in both human and T. cruzi and mass spectrometry data.
- Klíčová slova
- ES6(S), ES7(S), ES9(S), Trypanosoma cruzi, cryo-EM, eIF1, eIF2, eIF3, eIF5-CTD, k-DDX60, the 43S pre-initiation complex, translation initiation,
- MeSH
- molekulární modely MeSH
- proteosyntéza imunologie MeSH
- savci MeSH
- Trypanosomatina patogenita MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Translational control targeting the initiation phase is central to the regulation of gene expression. Understanding all of its aspects requires substantial technological advancements. Here we modified yeast translation complex profile sequencing (TCP-seq), related to ribosome profiling, and adapted it for mammalian cells. Human TCP-seq, capable of capturing footprints of 40S subunits (40Ss) in addition to 80S ribosomes (80Ss), revealed that mammalian and yeast 40Ss distribute similarly across 5'TRs, indicating considerable evolutionary conservation. We further developed yeast and human selective TCP-seq (Sel-TCP-seq), enabling selection of 40Ss and 80Ss associated with immuno-targeted factors. Sel-TCP-seq demonstrated that eIF2 and eIF3 travel along 5' UTRs with scanning 40Ss to successively dissociate upon AUG recognition; notably, a proportion of eIF3 lingers on during the initial elongation cycles. Highlighting Sel-TCP-seq versatility, we also identified four initiating 48S conformational intermediates, provided novel insights into ATF4 and GCN4 mRNA translational control, and demonstrated co-translational assembly of initiation factor complexes.
- Klíčová slova
- ATF4, GCN4, Ribo-seq, TCP-seq, UTR, co-translational assembly, eIF2, eIF3, gene expression, mRNA, ribosome, ribosome profiling, translational control,
- MeSH
- 5' nepřekládaná oblast MeSH
- eukaryotický iniciační faktor 2 genetika metabolismus MeSH
- eukaryotický iniciační faktor 3 genetika metabolismus MeSH
- HEK293 buňky MeSH
- iniciační faktory genetika metabolismus MeSH
- kodon iniciační MeSH
- lidé MeSH
- malé podjednotky ribozomu eukaryotické genetika metabolismus MeSH
- multiproteinové komplexy genetika metabolismus MeSH
- proteosyntéza * MeSH
- ribozomy genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika MeSH
- transkripční faktor ATF4 genetika metabolismus MeSH
- transkripční faktory bZIP genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 5' nepřekládaná oblast MeSH
- ATF4 protein, human MeSH Prohlížeč
- eukaryotický iniciační faktor 2 MeSH
- eukaryotický iniciační faktor 3 MeSH
- GCN4 protein, S cerevisiae MeSH Prohlížeč
- iniciační faktory MeSH
- kodon iniciační MeSH
- multiproteinové komplexy MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- transkripční faktor ATF4 MeSH
- transkripční faktory bZIP MeSH
eIF3 is a large multiprotein complex serving as an essential scaffold promoting binding of other eIFs to the 40S subunit, where it coordinates their actions during translation initiation. Perhaps due to a high degree of flexibility of multiple eIF3 subunits, a high-resolution structure of free eIF3 from any organism has never been solved. Employing genetics and biochemistry, we previously built a 2D interaction map of all five yeast eIF3 subunits. Here we further improved the previously reported in vitro reconstitution protocol of yeast eIF3, which we cross-linked and trypsin-digested to determine its overall shape in 3D by advanced mass-spectrometry. The obtained cross-links support our 2D subunit interaction map and reveal that eIF3 is tightly packed with its WD40 and RRM domains exposed. This contrasts with reported cryo-EM structures depicting eIF3 as a molecular embracer of the 40S subunit. Since the binding of eIF1 and eIF5 further fortified the compact architecture of eIF3, we suggest that its initial contact with the 40S solvent-exposed side makes eIF3 to open up and wrap around the 40S head with its extended arms. In addition, we mapped the position of eIF5 to the region below the P- and E-sites of the 40S subunit.
- MeSH
- elektronová kryomikroskopie MeSH
- eukaryotický iniciační faktor 1 chemie genetika metabolismus MeSH
- eukaryotický iniciační faktor 3 chemie genetika metabolismus MeSH
- eukaryotický iniciační faktor 5 chemie genetika metabolismus MeSH
- iniciace translace peptidového řetězce * MeSH
- malé podjednotky ribozomu eukaryotické genetika metabolismus MeSH
- molekulární modely MeSH
- proteinové domény MeSH
- Saccharomyces cerevisiae - proteiny chemie genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus ultrastruktura MeSH
- vazba proteinů MeSH
- vazebná místa genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- eukaryotický iniciační faktor 1 MeSH
- eukaryotický iniciační faktor 3 MeSH
- eukaryotický iniciační faktor 5 MeSH
- Saccharomyces cerevisiae - proteiny MeSH
Protein synthesis is mediated via numerous molecules including the ribosome, mRNA, tRNAs, as well as translation initiation, elongation and release factors. Some of these factors play several roles throughout the entire process to ensure proper assembly of the preinitiation complex on the right mRNA, accurate selection of the initiation codon, errorless production of the encoded polypeptide and its proper termination. Perhaps, the most intriguing of these multitasking factors is the eukaryotic initiation factor eIF3. Recent evidence strongly suggests that this factor, which coordinates the progress of most of the initiation steps, does not come off the initiation complex upon subunit joining, but instead it remains bound to 80S ribosomes and gradually falls off during the first few elongation cycles to: (1) promote resumption of scanning on the same mRNA molecule for reinitiation downstream-in case of translation of upstream ORFs short enough to preserve eIF3 bound; or (2) come back during termination on long ORFs to fine tune its fidelity or, if signaled, promote programmed stop codon readthrough. Here, we unite recent structural views of the eIF3-40S complex and discus all known eIF3 roles to provide a broad picture of the eIF3's impact on translational control in eukaryotic cells.
- MeSH
- eukaryotický iniciační faktor 3 chemie genetika metabolismus MeSH
- konformace proteinů * MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- molekulární modely MeSH
- podjednotky proteinů chemie genetika metabolismus MeSH
- proteosyntéza * MeSH
- ribozomy genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny chemie genetika metabolismus MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- eukaryotický iniciační faktor 3 MeSH
- messenger RNA MeSH
- podjednotky proteinů MeSH
- Saccharomyces cerevisiae - proteiny MeSH
Eukaryotic translation initiation factor 3 (eIF3) is a central player in recruitment of the pre-initiation complex (PIC) to mRNA. We probed the effects on mRNA recruitment of a library of S. cerevisiae eIF3 functional variants spanning its 5 essential subunits using an in vitro-reconstituted system. Mutations throughout eIF3 disrupt its interaction with the PIC and diminish its ability to accelerate recruitment to a native yeast mRNA. Alterations to the eIF3a CTD and eIF3b/i/g significantly slow mRNA recruitment, and mutations within eIF3b/i/g destabilize eIF2•GTP•Met-tRNAi binding to the PIC. Using model mRNAs lacking contacts with the 40S entry or exit channels, we uncovered a critical role for eIF3 requiring the eIF3a NTD, in stabilizing mRNA interactions at the exit channel, and an ancillary role at the entry channel requiring residues of the eIF3a CTD. These functions are redundant: defects at each channel can be rescued by filling the other channel with mRNA.
- Klíčová slova
- S. cerevisiae, biochemistry, biophysics, eIF3, initiation, mRNA recruitment, ribosome, structural biology, translation, yeast,
- MeSH
- eukaryotický iniciační faktor 3 genetika metabolismus MeSH
- guanosintrifosfát metabolismus MeSH
- messenger RNA metabolismus MeSH
- mutační analýza DNA MeSH
- mutantní proteiny genetika metabolismus MeSH
- podjednotky proteinů genetika metabolismus MeSH
- proteosyntéza MeSH
- ribozomy metabolismus MeSH
- RNA transferová Met metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- eukaryotický iniciační faktor 3 MeSH
- guanosintrifosfát MeSH
- messenger RNA MeSH
- mutantní proteiny MeSH
- podjednotky proteinů MeSH
- RNA transferová Met MeSH
The main role of the translation initiation factor 3 (eIF3) is to orchestrate formation of 43S-48S preinitiation complexes (PICs). Until now, most of our knowledge on eIF3 functional contribution to regulation of gene expression comes from yeast studies. Hence, here we developed several novel in vivo assays to monitor the integrity of the 13-subunit human eIF3 complex, defects in assembly of 43S PICs, efficiency of mRNA recruitment, and postassembly events such as AUG recognition. We knocked down expression of the PCI domain-containing eIF3c and eIF3a subunits and of eIF3j in human HeLa and HEK293 cells and analyzed the functional consequences. Whereas eIF3j downregulation had barely any effect and eIF3a knockdown disintegrated the entire eIF3 complex, eIF3c knockdown produced a separate assembly of the a, b, g, and i subunits (closely resembling the yeast evolutionary conserved eIF3 core), which preserved relatively high 40S binding affinity and an ability to promote mRNA recruitment to 40S subunits and displayed defects in AUG recognition. Both eIF3c and eIF3a knockdowns also severely reduced protein but not mRNA levels of many other eIF3 subunits and indeed shut off translation. We propose that eIF3a and eIF3c control abundance and assembly of the entire eIF3 and thus represent its crucial scaffolding elements critically required for formation of PICs.
- MeSH
- buněčné linie MeSH
- eukaryotický iniciační faktor 3 genetika metabolismus MeSH
- HEK293 buňky MeSH
- HeLa buňky MeSH
- iniciace translace peptidového řetězce genetika MeSH
- lidé MeSH
- malá interferující RNA MeSH
- proliferace buněk MeSH
- proteiny vázající RNA genetika metabolismus MeSH
- regulace genové exprese MeSH
- ribozomální proteiny genetika metabolismus MeSH
- RNA interference MeSH
- RNA ribozomální genetika MeSH
- vazba proteinů genetika fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- EIF3A protein, human MeSH Prohlížeč
- eukaryotický iniciační faktor 3 MeSH
- malá interferující RNA MeSH
- proteiny vázající RNA MeSH
- ribozomální proteiny MeSH
- RNA ribozomální MeSH
Transfer of genetic information from genes into proteins is mediated by messenger RNA (mRNA) that must be first recruited to ribosomal pre-initiation complexes (PICs) by a mechanism that is still poorly understood. Recent studies showed that besides eIF4F and poly(A)-binding protein, eIF3 also plays a critical role in this process, yet the molecular mechanism of its action is unknown. We showed previously that the PCI domain of the eIF3c/NIP1 subunit of yeast eIF3 is involved in RNA binding. To assess the role of the second PCI domain of eIF3 present in eIF3a/TIF32, we performed its mutational analysis and identified a 10-Ala-substitution (Box37) that severely reduces amounts of model mRNA in the 43-48S PICs in vivo as the major, if not the only, detectable defect. Crystal structure analysis of the a/TIF32-PCI domain at 2.65-Å resolution showed that it is required for integrity of the eIF3 core and, similarly to the c/NIP1-PCI, is capable of RNA binding. The putative RNA-binding surface defined by positively charged areas contains two Box37 residues, R363 and K364. Their substitutions with alanines severely impair the mRNA recruitment step in vivo suggesting that a/TIF32-PCI represents one of the key domains ensuring stable and efficient mRNA delivery to the PICs.
- MeSH
- alanin genetika MeSH
- eukaryotický iniciační faktor 3 chemie genetika metabolismus MeSH
- fenotyp MeSH
- iniciace translace peptidového řetězce * MeSH
- malé podjednotky ribozomu eukaryotické metabolismus MeSH
- messenger RNA metabolismus MeSH
- molekulární modely MeSH
- mutace MeSH
- Saccharomyces cerevisiae - proteiny chemie genetika metabolismus MeSH
- substituce aminokyselin MeSH
- terciární struktura proteinů MeSH
- transkripční faktory bZIP genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alanin MeSH
- eukaryotický iniciační faktor 3 MeSH
- GCN4 protein, S cerevisiae MeSH Prohlížeč
- messenger RNA MeSH
- NIP1 protein, S cerevisiae MeSH Prohlížeč
- RPG1 protein, S cerevisiae MeSH Prohlížeč
- Saccharomyces cerevisiae - proteiny MeSH
- transkripční faktory bZIP MeSH
In eukaryotes, for a protein to be synthesized, the 40 S subunit has to first scan the 5'-UTR of the mRNA until it has encountered the AUG start codon. Several initiation factors that ensure high fidelity of AUG recognition were identified previously, including eIF1A, eIF1, eIF2, and eIF5. In addition, eIF3 was proposed to coordinate their functions in this process as well as to promote their initial binding to 40 S subunits. Here we subjected several previously identified segments of the N-terminal domain (NTD) of the eIF3c/Nip1 subunit, which mediates eIF3 binding to eIF1 and eIF5, to semirandom mutagenesis to investigate the molecular mechanism of eIF3 involvement in these reactions. Three major classes of mutant substitutions or internal deletions were isolated that affect either the assembly of preinitiation complexes (PICs), scanning for AUG, or both. We show that eIF5 binds to the extreme c/Nip1-NTD (residues 1-45) and that impairing this interaction predominantly affects the PIC formation. eIF1 interacts with the region (60-137) that immediately follows, and altering this contact deregulates AUG recognition. Together, our data indicate that binding of eIF1 to the c/Nip1-NTD is equally important for its initial recruitment to PICs and for its proper functioning in selecting the translational start site.
- MeSH
- eukaryotický iniciační faktor 3 genetika metabolismus MeSH
- iniciace translace peptidového řetězce fyziologie MeSH
- kodon iniciační genetika metabolismus MeSH
- malé podjednotky ribozomu eukaryotické genetika metabolismus MeSH
- multiproteinové komplexy genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- eukaryotický iniciační faktor 3 MeSH
- kodon iniciační MeSH
- multiproteinové komplexy MeSH
- NIP1 protein, S cerevisiae MeSH Prohlížeč
- Saccharomyces cerevisiae - proteiny MeSH
The ribosome translates information encoded by mRNAs into proteins in all living cells. In eukaryotes, its small subunit together with a number of eukaryotic initiation factors (eIFs) is responsible for locating the mRNA's translational start to properly decode the genetic message that it carries. This multistep process requires timely and spatially coordinated placement of eIFs on the ribosomal surface. In our long-standing pursuit to map the 40S-binding site of one of the functionally most complex eIFs, yeast multisubunit eIF3, we identified several interactions that placed its major body to the head, beak and shoulder regions of the solvent-exposed side of the 40S subunit. Among them is the interaction between the N-terminal domain (NTD) of the a/TIF32 subunit of eIF3 and the small ribosomal protein RPS0A, residing near the mRNA exit channel. Previously, we demonstrated that the N-terminal truncation of 200 residues in tif32-Δ8 significantly reduced association of eIF3 and other eIFs with 40S ribosomes in vivo and severely impaired translation reinitiation that eIF3 ensures. Here we show that not the first but the next 200 residues of a/TIF32 specifically interact with RPS0A via its extreme C-terminal tail (CTT). Detailed analysis of the RPS0A conditional depletion mutant revealed a marked drop in the polysome to monosome ratio suggesting that the initiation rates of cells grown under non-permissive conditions were significantly impaired. Indeed, amounts of eIF3 and other eIFs associated with 40S subunits in the pre-initiation complexes in the RPS0A-depleted cells were found reduced; consistently, to the similar extent as in the tif32-Δ8 cells. Similar but less pronounced effects were also observed with the viable CTT-less mutant of RPS0A. Together we conclude that the interaction between the flexible RPS0A-CTT and the residues 200-400 of the a/TIF32-NTD significantly stimulates attachment of eIF3 and its associated eIFs to small ribosomal subunits in vivo.
- MeSH
- eukaryotický iniciační faktor 3 metabolismus MeSH
- genový knockout MeSH
- iniciace translace peptidového řetězce * MeSH
- interakční proteinové domény a motivy MeSH
- malé podjednotky ribozomu eukaryotické metabolismus MeSH
- podjednotky proteinů metabolismus MeSH
- ribozomální proteiny genetika metabolismus fyziologie MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus fyziologie MeSH
- Saccharomyces cerevisiae metabolismus MeSH
- techniky dvojhybridového systému MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- eukaryotický iniciační faktor 3 MeSH
- podjednotky proteinů MeSH
- ribozomální proteiny MeSH
- RPG1 protein, S cerevisiae MeSH Prohlížeč
- RPS0A protein, S cerevisiae MeSH Prohlížeč
- Saccharomyces cerevisiae - proteiny MeSH
Protein synthesis is a fundamental biological mechanism bringing the DNA-encoded genetic information into life by its translation into molecular effectors - proteins. The initiation phase of translation is one of the key points of gene regulation in eukaryotes, playing a role in processes from neuronal function to development. Indeed, the importance of the study of protein synthesis is increasing with the growing list of genetic diseases caused by mutations that affect mRNA translation. To grasp how this regulation is achieved or altered in the latter case, we must first understand the molecular details of all underlying processes of the translational cycle with the main focus put on its initiation. In this review I discuss recent advances in our comprehension of the molecular basis of particular initiation reactions set into the context of how and where individual eIFs bind to the small ribosomal subunit in the pre-initiation complex. I also summarize our current knowledge on how eukaryotic initiation factor eIF3 controls gene expression in the gene-specific manner via reinitiation.
- MeSH
- Eukaryota metabolismus MeSH
- eukaryotické iniciační faktory metabolismus MeSH
- iniciace translace peptidového řetězce genetika MeSH
- lidé MeSH
- molekulární modely MeSH
- ribozomy metabolismus MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- eukaryotické iniciační faktory MeSH