Nejvíce citovaný článek - PubMed ID 15565717
Fructooligosaccharides (FOS) are compounds possessing various health properties and are added to functional foods as prebiotics. The commercial production of FOS is done through the enzymatic transfructolysation of sucrose by β-fructofuranosidases which is found in various organisms of which Aureobasidium pullulans and Aspergillus niger are the most well known. This study overexpressed two differently codon-optimized variations of the Aspergillus fijiensis β-fructofuranosidase-encoding gene (fopA) under the transcriptional control of either the alcohol oxidase (AOX1) or glyceraldehyde-3-phosphate dehydrogenase (GAP) promoters. When cultivated in shake flasks, the two codon-optimized variants displayed similar volumetric enzyme activities when expressed under control of the same promoter with the GAP strains producing 11.7 U/ml and 12.7 U/ml, respectively, and the AOX1 strains 95.8 U/ml and 98.6 U/ml, respectively. However, the highest production levels were achieved for both codon-optimized genes when expressed under control of the AOX1 promoter. The AOX1 promoter was superior to the GAP promoter in bioreactor cultivations for both codon-optimized genes with 13,702 U/ml and 2718 U/ml for the AOX1 promoter for ATUM and GeneArt®, respectively, and 6057 U/ml and 1790 U/ml for the GAP promoter for ATUM and GeneArt®, respectively. The ATUM-optimized gene produced higher enzyme activities when compared to the one from GeneArt®, under the control of both promoters.
- MeSH
- Aspergillus MeSH
- invertasa * genetika MeSH
- kodon genetika MeSH
- Pichia * genetika MeSH
- rekombinantní proteiny genetika MeSH
- Saccharomycetales MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- invertasa * MeSH
- kodon MeSH
- rekombinantní proteiny MeSH
Folding and processing of proteins in the endoplasmic reticulum (ER) are major impediments in the production and secretion of proteins from Pichia pastoris (Komagataella sp.). Overexpression of recombinant genes can overwhelm the innate secretory machinery of the P. pastoris cell, and incorrectly folded proteins may accumulate inside the ER. To restore proper protein folding, the cell naturally triggers an unfolded protein response (UPR) pathway, which upregulates the expression of genes coding for chaperones and other folding-assisting proteins (e.g., Kar2p, Pdi1, Ero1p) via the transcription activator Hac1p. Unfolded/misfolded proteins that cannot be repaired are degraded via the ER-associated degradation (ERAD) pathway, which decreases productivity. Co-expression of selected UPR genes, along with the recombinant gene of interest, is a common approach to enhance the production of properly folded, secreted proteins. Such an approach, however, is not always successful and sometimes, protein productivity decreases because of an unbalanced UPR. This review summarizes successful chaperone co-expression strategies in P. pastoris that are specifically related to overproduction of foreign proteins and the UPR. In addition, it illustrates possible negative effects on the cell's physiology and productivity resulting from genetic engineering of the UPR pathway. We have focused on Pichia's potential for commercial production of valuable proteins and we aim to optimize molecular designs so that production strains can be tailored to suit a specific heterologous product. KEY POINTS: • Chaperones co-expressed with recombinant genes affect productivity in P. pastoris. • Enhanced UPR may impair strain physiology and promote protein degradation. • Gene copy number of the target gene and the chaperone determine the secretion rate.
- Klíčová slova
- Chaperone, Co-expression strategy, Folding and secretion, Pichia pastoris, Productivity of recombinant protein production, Unfolded protein response (UPR),
- MeSH
- fungální proteiny * genetika metabolismus MeSH
- Pichia * genetika metabolismus MeSH
- rekombinantní proteiny genetika metabolismus MeSH
- Saccharomycetales MeSH
- signální dráha UPR MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- fungální proteiny * MeSH
- rekombinantní proteiny MeSH
BACKGROUND: Penicillin G acylase of Escherichia coli (PGAEc) is a commercially valuable enzyme for which efficient bacterial expression systems have been developed. The enzyme is used as a catalyst for the hydrolytic production of beta-lactam nuclei or for the synthesis of semi-synthetic penicillins such as ampicillin, amoxicillin and cephalexin. To become a mature, periplasmic enzyme, the inactive prepropeptide of PGA has to undergo complex processing that begins in the cytoplasm (autocatalytic cleavage), continues at crossing the cytoplasmic membrane (signal sequence removing), and it is completed in the periplasm. Since there are reports on impressive cytosolic expression of bacterial proteins in Pichia, we have cloned the leader-less gene encoding PGAEc in this host and studied yeast production capacity and enzyme authenticity. RESULTS: Leader-less pga gene encoding PGAEcunder the control of AOX1 promoter was cloned in Pichia pastoris X-33. The intracellular overproduction of heterologous PGAEc(hPGAEc) was evaluated in a stirred 10 litre bioreactor in high-cell density, fed batch cultures using different profiles of transient phases. Under optimal conditions, the average volumetric activity of 25900 U l-1 was reached. The hPGAEc was purified, characterized and compared with the wild-type PGAEc. The alpha-subunit of the hPGAEc formed in the cytosol was processed aberrantly resulting in two forms with C- terminuses extended to the spacer peptide. The enzyme exhibited modified traits: the activity of the purified enzyme was reduced to 49%, the ratios of hydrolytic activities with cephalexin, phenylacetamide or 6-nitro-3-phenylacetylamidobenzoic acid (NIPAB) to penicillin G increased and the enzyme showed a better synthesis/hydrolysis ratio for the synthesis of cephalexin. CONCLUSIONS: Presented results provide useful data regarding fermentation strategy, intracellular biosynthetic potential, and consequences of the heterologous expression of PGAEc in P. pastoris X-33. Aberrant processing of the precursor of PGAEc in the cytosol yielded the mature enzyme with modified traits.
- MeSH
- bioreaktory MeSH
- Escherichia coli enzymologie genetika MeSH
- fermentace MeSH
- klonování DNA MeSH
- penicilinamidasa biosyntéza genetika izolace a purifikace MeSH
- Pichia genetika metabolismus MeSH
- promotorové oblasti (genetika) MeSH
- proteiny z Escherichia coli biosyntéza genetika izolace a purifikace MeSH
- průmyslová mikrobiologie * MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- substrátová specifita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- penicilinamidasa MeSH
- proteiny z Escherichia coli MeSH