Most cited article - PubMed ID 15722433
Head and neck squamous cell carcinomas (HNSCC) belong among severe and highly complex malignant diseases showing a high level of heterogeneity and consequently also a variance in therapeutic response, regardless of clinical stage. Our study implies that the progression of HNSCC may be supported by cancer-associated fibroblasts (CAFs) in the tumour microenvironment (TME) and the heterogeneity of this disease may lie in the level of cooperation between CAFs and epithelial cancer cells, as communication between CAFs and epithelial cancer cells seems to be a key factor for the sustained growth of the tumour mass. In this study, we investigated how CAFs derived from tumours of different mRNA subtypes influence the proliferation of cancer cells and their metabolic and biomechanical reprogramming. We also investigated the clinicopathological significance of the expression of these metabolism-related genes in tissue samples of HNSCC patients to identify a possible gene signature typical for HNSCC progression. We found that the right kind of cooperation between cancer cells and CAFs is needed for tumour growth and progression, and only specific mRNA subtypes can support the growth of primary cancer cells or metastases. Specifically, during coculture, cancer cell colony supporting effect and effect of CAFs on cell stiffness of cancer cells are driven by the mRNA subtype of the tumour from which the CAFs are derived. The degree of colony-forming support is reflected in cancer cell glycolysis levels and lactate shuttle-related transporters.
- Keywords
- HNSCC, cancer, cancer-associated fibroblasts, cell stiffness, tumour microenvironment,
- Publication type
- Journal Article MeSH
The rapidly growing field of mechanobiology demands for robust and reproducible characterization of cell mechanical properties. Recent achievements in understanding the mechanical regulation of cell fate largely rely on technological platforms capable of probing the mechanical response of living cells and their physico-chemical interaction with the microenvironment. Besides the established family of atomic force microscopy (AFM) based methods, other approaches include optical, magnetic, and acoustic tweezers, as well as sensing substrates that take advantage of biomaterials chemistry and microfabrication techniques. In this review, we introduce the available methods with an emphasis on the most recent advances, and we discuss the challenges associated with their implementation.
- Keywords
- AFM, MEMS, cell mechanics, cell-generated forces, mechanobiology, mechanotransduction, traction force microscopy, tweezing methods,
- Publication type
- Journal Article MeSH
- Review MeSH
Evaluation of circulating tumor cells (CTCs) has demonstrated clinical validity as a prognostic tool based on enumeration, but since the introduction of this tool to the clinic in 2004, further clinical utility and widespread adoption have been limited. However, immense efforts have been undertaken to further the understanding of the mechanisms behind the biology and kinetics of these rare cells, and progress continues toward better applicability in the clinic. This review describes recent advances within the field, with a particular focus on understanding the biological significance of CTCs, and summarizes emerging methods for identifying, isolating, and interrogating the cells that may provide technical advantages allowing for the discovery of more specific clinical applications. Included is an atlas of high-definition images of CTCs from various cancer types, including uncommon CTCs captured only by broadly inclusive nonenrichment techniques.
- Keywords
- biomarkers, circulating tumor microemboli, fluid biopsy, liquid biopsy, metastasis, precision medicine,
- MeSH
- Humans MeSH
- Biomarkers, Tumor analysis MeSH
- Neoplastic Cells, Circulating pathology MeSH
- Neoplasms pathology MeSH
- Prognosis MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Biomarkers, Tumor MeSH
Plasma membrane tension is an important feature that determines the cell shape and influences processes such as cell motility, spreading, endocytosis and exocytosis. Unconventional class 1 myosins are potent regulators of plasma membrane tension because they physically link the plasma membrane with adjacent cytoskeleton. We identified nuclear myosin 1 (NM1) - a putative nuclear isoform of myosin 1c (Myo1c) - as a new player in the field. Although having specific nuclear functions, NM1 localizes predominantly to the plasma membrane. Deletion of NM1 causes more than a 50% increase in the elasticity of the plasma membrane around the actin cytoskeleton as measured by atomic force microscopy. This higher elasticity of NM1 knock-out cells leads to 25% higher resistance to short-term hypotonic environment and rapid cell swelling. In contrast, overexpression of NM1 in wild type cells leads to an additional 30% reduction of their survival. We have shown that NM1 has a direct functional role in the cytoplasm as a dynamic linker between the cell membrane and the underlying cytoskeleton, regulating the degree of effective plasma membrane tension.
- MeSH
- Cell Membrane metabolism MeSH
- Cell Nucleus metabolism MeSH
- Exocytosis physiology MeSH
- Fibroblasts cytology metabolism MeSH
- HeLa Cells MeSH
- Cells, Cultured MeSH
- Skin cytology metabolism MeSH
- Humans MeSH
- Actin Cytoskeleton metabolism MeSH
- Myosin Type I metabolism MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Cell Movement MeSH
- Cell Shape MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Myosin Type I MeSH
Biological systems are hierarchically self-organized complex structures characterized by nonlinear interactions. Biochemical energy is transformed into work of physical forces required for various biological functions. We postulate that energy transduction depends on endogenous electrodynamic fields generated by microtubules. Microtubules and mitochondria colocalize in cells with microtubules providing tracks for mitochondrial movement. Besides energy transformation, mitochondria form a spatially distributed proton charge layer and a resultant strong static electric field, which causes water ordering in the surrounding cytosol. These effects create conditions for generation of coherent electrodynamic field. The metabolic energy transduction pathways are strongly affected in cancers. Mitochondrial dysfunction in cancer cells (Warburg effect) or in fibroblasts associated with cancer cells (reverse Warburg effect) results in decreased or increased power of the generated electromagnetic field, respectively, and shifted and rebuilt frequency spectra. Disturbed electrodynamic interaction forces between cancer and healthy cells may favor local invasion and metastasis. A therapeutic strategy of targeting dysfunctional mitochondria for restoration of their physiological functions makes it possible to switch on the natural apoptotic pathway blocked in cancer transformed cells. Experience with dichloroacetate in cancer treatment and reestablishment of the healthy state may help in the development of novel effective drugs aimed at the mitochondrial function.
- MeSH
- Models, Biological * MeSH
- Electromagnetic Fields * MeSH
- Humans MeSH
- Mitochondria radiation effects MeSH
- Cell Transformation, Neoplastic radiation effects MeSH
- Neoplasms physiopathology MeSH
- Energy Transfer * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH