Nejvíce citovaný článek - PubMed ID 15788452
Preimplantation mouse embryo development involves temporal-spatial specification and segregation of three blastocyst cell lineages: trophectoderm, primitive endoderm and epiblast. Spatial separation of the outer-trophectoderm lineage from the two other inner-cell-mass (ICM) lineages starts with the 8- to 16-cell transition and concludes at the 32-cell stages. Accordingly, the ICM is derived from primary and secondary contributed cells; with debated relative EPI versus PrE potencies. We report generation of primary but not secondary ICM populations is highly dependent on temporal activation of mammalian target of Rapamycin (mTOR) during 8-cell stage M-phase entry, mediated via regulation of the 7-methylguanosine-cap (m7G-cap)-binding initiation complex (EIF4F) and linked to translation of mRNAs containing 5' UTR terminal oligopyrimidine (TOP-) sequence motifs, as knockdown of identified TOP-like motif transcripts impairs generation of primary ICM founders. However, mTOR inhibition-induced ICM cell number deficits in early blastocysts can be compensated by the late blastocyst stage, after inhibitor withdrawal; compensation likely initiated at the 32-cell stage when supernumerary outer cells exhibit molecular characteristics of inner cells. These data identify a novel mechanism specifically governing initial spatial segregation of mouse embryo blastomeres, that is distinct from those directing subsequent inner cell formation, contributing to germane segregation of late blastocyst lineages.
- Klíčová slova
- EIF4EBP1/4EBP1, TOP-motif, cell fate, inner cell mass/ICM and cell positioning, mTOR/mTORC1, preimplantation mouse embryo,
- MeSH
- blastocysta * MeSH
- buněčná diferenciace fyziologie MeSH
- buněčný rodokmen MeSH
- embryo savčí * MeSH
- mechanistické cílové místo rapamycinového komplexu 1 MeSH
- myši MeSH
- savci MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mechanistické cílové místo rapamycinového komplexu 1 MeSH
Successful navigation of the mouse preimplantation stages of development, during which three distinct blastocyst lineages are derived, represents a prerequisite for continued development. We previously identified a role for p38-mitogen-activated kinases (p38-MAPK) regulating blastocyst inner cell mass (ICM) cell fate, specifically primitive endoderm (PrE) differentiation, that is intimately linked to rRNA precursor processing, polysome formation and protein translation regulation. Here, we develop this work by assaying the role of DEAD-box RNA helicase 21 (DDX21), a known regulator of rRNA processing, in the context of p38-MAPK regulation of preimplantation mouse embryo development. We show nuclear DDX21 protein is robustly expressed from the 16-cell stage, becoming exclusively nucleolar during blastocyst maturation, a localization dependent on active p38-MAPK. siRNA-mediated clonal Ddx21 knockdown within developing embryos is associated with profound cell-autonomous and non-autonomous proliferation defects and reduced blastocyst volume, by the equivalent peri-implantation blastocyst stage. Moreover, ICM residing Ddx21 knockdown clones express the EPI marker NANOG but rarely express the PrE differentiation marker GATA4. These data contribute further significance to the emerging importance of lineage-specific translation regulation, as identified for p38-MAPK, during mouse preimplantation development.
- Klíčová slova
- DDX21, cell fate specification, p38-MAPK, preimplantation embryo development,
- MeSH
- blastocysta cytologie metabolismus MeSH
- buněčná diferenciace * genetika MeSH
- buněčný rodokmen genetika MeSH
- DEAD-box RNA-helikasy genetika metabolismus MeSH
- embryonální vývoj * genetika MeSH
- fluorescenční protilátková technika MeSH
- genový knockdown MeSH
- mitogenem aktivované proteinkinasy p38 metabolismus MeSH
- myši MeSH
- signální transdukce MeSH
- těhotenství MeSH
- transport proteinů MeSH
- vazba proteinů MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DDX21 protein, mouse MeSH Prohlížeč
- DEAD-box RNA-helikasy MeSH
- mitogenem aktivované proteinkinasy p38 MeSH
Successful specification of the two mouse blastocyst inner cell mass (ICM) lineages (the primitive endoderm (PrE) and epiblast) is a prerequisite for continued development and requires active fibroblast growth factor 4 (FGF4) signaling. Previously, we identified a role for p38 mitogen-activated protein kinases (p38-MAPKs) during PrE differentiation, but the underlying mechanisms have remained unresolved. Here, we report an early blastocyst window of p38-MAPK activity that is required to regulate ribosome-related gene expression, rRNA precursor processing, polysome formation and protein translation. We show that p38-MAPK inhibition-induced PrE phenotypes can be partially rescued by activating the translational regulator mTOR. However, similar PrE phenotypes associated with extracellular signal-regulated kinase (ERK) pathway inhibition targeting active FGF4 signaling are not affected by mTOR activation. These data indicate a specific role for p38-MAPKs in providing a permissive translational environment during mouse blastocyst PrE differentiation that is distinct from classically reported FGF4-based mechanisms.
- MeSH
- blastocysta fyziologie MeSH
- buněčná diferenciace MeSH
- buněčný rodokmen MeSH
- DNA vazebné proteiny fyziologie MeSH
- embryonální vývoj MeSH
- endoderm cytologie MeSH
- mitogenem aktivované proteinkinasy p38 antagonisté a inhibitory fyziologie MeSH
- myši MeSH
- proteiny vázající RNA fyziologie MeSH
- proteosyntéza * MeSH
- TOR serin-threoninkinasy fyziologie MeSH
- transkripční faktory fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- mitogenem aktivované proteinkinasy p38 MeSH
- mTOR protein, mouse MeSH Prohlížeč
- Mybbp1a protein, mouse MeSH Prohlížeč
- proteiny vázající RNA MeSH
- TOR serin-threoninkinasy MeSH
- transkripční faktory MeSH
Loss of totipotentcy in an early embryo is directed by molecular processes responsible for cell fate decisions. Three dimensional genome organisation is an important factor linking chromatin architecture with stage specific gene expression patterns. Little is known about the role of chromosome organisation in gene expression regulation of lineage specific factors in mammalian embryos. Using bovine embryos as a model we have described these interactions at key developmental stages. Three bovine chromosomes (BTA) that differ in size, number of carried genes, and contain loci for key lineage regulators OCT4, NANOG and CDX2, were investigated. The results suggest that large chromosomes regardless of their gene density (BTA12 gene-poor, BTA5 gene-rich) do not significantly change their radial position within the nucleus. Gene loci however, may change its position within the chromosome territory (CT) and relocate its periphery, when stage specific process of gene activation is required. Trophectoderm specific CDX2 and epiblast precursor NANOG loci tend to locate on the surface or outside of the CTs, at stages related with their high expression. We postulate that the observed changes in CT shape reflect global alternations in gene expression related to differentiation.
- MeSH
- buněčné jádro genetika MeSH
- buněčný rodokmen MeSH
- embryonální vývoj MeSH
- hybridizace in situ fluorescenční MeSH
- nanog genetika metabolismus MeSH
- oktamerní transkripční faktor 3 genetika metabolismus MeSH
- savčí chromozomy genetika MeSH
- skot MeSH
- transkripční faktor CDX2 genetika metabolismus MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- nanog MeSH
- oktamerní transkripční faktor 3 MeSH
- transkripční faktor CDX2 MeSH
During mouse preimplantation embryo development, the classically described second cell-fate decision involves the specification and segregation, in blastocyst inner cell mass (ICM), of primitive endoderm (PrE) from pluripotent epiblast (EPI). The active role of fibroblast growth factor (Fgf) signalling during PrE differentiation, particularly in the context of Erk1/2 pathway activation, is well described. However, we report that p38 family mitogen-activated protein kinases (namely p38α/Mapk14 and p38β/Mapk11; referred to as p38-Mapk14/11) also participate in PrE formation. Specifically, functional p38-Mapk14/11 are required, during early-blastocyst maturation, to assist uncommitted ICM cells, expressing both EPI and earlier PrE markers, to fully commit to PrE differentiation. Moreover, functional activation of p38-Mapk14/11 is, as reported for Erk1/2, under the control of Fgf-receptor signalling, plus active Tak1 kinase (involved in non-canonical bone morphogenetic protein (Bmp)-receptor-mediated PrE differentiation). However, we demonstrate that the critical window of p38-Mapk14/11 activation precedes the E3.75 timepoint (defined by the initiation of the classical 'salt and pepper' expression pattern of mutually exclusive EPI and PrE markers), whereas appropriate lineage maturation is still achievable when Erk1/2 activity (via Mek1/2 inhibition) is limited to a period after E3.75. We propose that active p38-Mapk14/11 act as enablers, and Erk1/2 as drivers, of PrE differentiation during ICM lineage specification and segregation.
- Klíčová slova
- cell signalling, cell-fate, mitogen-activated protein kinase, p38α/p38β Mapk14/Mapk11, preimplantation mouse embryo, primitive endoderm,
- MeSH
- blastocysta fyziologie MeSH
- buněčná diferenciace MeSH
- embryonální vývoj * MeSH
- endoderm embryologie MeSH
- fibroblastové růstové faktory metabolismus MeSH
- messenger RNA metabolismus MeSH
- mitogenem aktivovaná proteinkinasa 11 metabolismus MeSH
- mitogenem aktivovaná proteinkinasa 14 metabolismus MeSH
- myši MeSH
- signální transdukce MeSH
- zárodečné listy fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fibroblastové růstové faktory MeSH
- messenger RNA MeSH
- mitogenem aktivovaná proteinkinasa 11 MeSH
- mitogenem aktivovaná proteinkinasa 14 MeSH
During mouse preimplantation embryo development, three distinct cell lineages are formed, represented by the differentiating trophectoderm (TE), primitive endoderm (PrE) and the pluripotent epiblast (EPI). Classically, lineage derivation has been presented as a two-step process whereby outer TE cells are first segregated from inner-cell mass (ICM), followed by ICM refinement into either the PrE or EPI. As ICM founders can be produced following the fourth or fifth cleavage divisions, their potential to equally contribute to EPI and PrE is contested. Thus, modelling the early sequestration of ICM founders from TE-differentiation after the fourth cleavage division, we examined ICM lineage contribution of varying sized cell clones unable to initiate TE-differentiation. Such TE-inhibited ICM cells do not equally contribute to EPI and PrE and are significantly biased to form EPI. This bias is not caused by enhanced expression of the EPI marker Nanog, nor correlated with reduced apical polarity but associated with reduced expression of PrE-related gene transcripts (Dab2 and Lrp2) and down-regulation of plasma membrane associated Fgfr2. Our results favour a unifying model were the three cell lineages are guided in an integrated, yet flexible, fate decision centred on relative exposure of founder cells to TE-differentiative cues.
- MeSH
- blastocysta cytologie fyziologie MeSH
- buněčná diferenciace fyziologie MeSH
- embryo savčí cytologie embryologie MeSH
- embryonální vývoj fyziologie MeSH
- kultivované buňky MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- vývojová regulace genové exprese fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH