Most cited article - PubMed ID 15862229
Combined event-related fMRI and intracerebral ERP study of an auditory oddball task
Various disease conditions can alter EEG event-related responses and fMRI-BOLD signals. We hypothesized that event-related responses and their clinical alterations are imprinted in the EEG spectral domain as event-related (spatio)spectral patterns (ERSPat). We tested four EEG-fMRI fusion models utilizing EEG power spectra fluctuations (i.e., absolute spectral model - ASM; relative spectral model - RSM; absolute spatiospectral model - ASSM; and relative spatiospectral model - RSSM) for fully automated and blind visualization of task-related neural networks. Two (spatio)spectral patterns (high δ 4 band and low β 1 band) demonstrated significant negative linear relationship (p FWE < 0.05) to the frequent stimulus and three patterns (two low δ 2 and δ 3 bands, and narrow θ 1 band) demonstrated significant positive relationship (p < 0.05) to the target stimulus. These patterns were identified as ERSPats. EEG-fMRI F-map of each δ 4 model showed strong engagement of insula, cuneus, precuneus, basal ganglia, sensory-motor, motor and dorsal part of fronto-parietal control (FPCN) networks with fast HRF peak and noticeable trough. ASM and RSSM emphasized spatial statistics, and the relative power amplified the relationship to the frequent stimulus. For the δ 4 model, we detected a reduced HRF peak amplitude and a magnified HRF trough amplitude in the frontal part of the FPCN, default mode network (DMN) and in the frontal white matter. The frequent-related β 1 patterns visualized less significant and distinct suprathreshold spatial associations. Each θ 1 model showed strong involvement of lateralized left-sided sensory-motor and motor networks with simultaneous basal ganglia co-activations and reduced HRF peak and amplified HRF trough in the frontal part of the FPCN and DMN. The ASM θ 1 model preserved target-related EEG-fMRI associations in the dorsal part of the FPCN. For δ 4, β 1, and θ 1 bands, all models provided high local F-statistics in expected regions. The most robust EEG-fMRI associations were observed for ASM and RSSM.
Human perception and cognition are based predominantly on visual information processing. Much of the information regarding neuronal correlates of visual processing has been derived from functional imaging studies, which have identified a variety of brain areas contributing to visual analysis, recognition, and processing of objects and scenes. However, only two of these areas, namely the parahippocampal place area (PPA) and the lateral occipital complex (LOC), were verified and further characterized by intracranial electroencephalogram (iEEG). iEEG is a unique measurement technique that samples a local neuronal population with high temporal and anatomical resolution. In the present study, we aimed to expand on previous reports and examine brain activity for selectivity of scenes and objects in the broadband high-gamma frequency range (50-150 Hz). We collected iEEG data from 27 epileptic patients while they watched a series of images, containing objects and scenes, and we identified 375 bipolar channels responding to at least one of these two categories. Using K-means clustering, we delineated their brain localization. In addition to the two areas described previously, we detected significant responses in two other scene-selective areas, not yet reported by any electrophysiological studies; namely the occipital place area (OPA) and the retrosplenial complex. Moreover, using iEEG we revealed a much broader network underlying visual processing than that described to date, using specialized functional imaging experimental designs. Here, we report the selective brain areas for scene processing include the posterior collateral sulcus and the anterior temporal region, which were already shown to be related to scene novelty and landmark naming. The object-selective responses appeared in the parietal, frontal, and temporal regions connected with tool use and object recognition. The temporal analyses specified the time course of the category selectivity through the dorsal and ventral visual streams. The receiver operating characteristic analyses identified the PPA and the fusiform portion of the LOC as being the most selective for scenes and objects, respectively. Our findings represent a valuable overview of visual processing selectivity for scenes and objects based on iEEG analyses and thus, contribute to a better understanding of visual processing in the human brain.
- Keywords
- high-frequency gamma activity, human brain, lateral occipital complex, objects, parahippocampal place area, scenes, stereoencephalography, visual processing,
- Publication type
- Journal Article MeSH
BACKGROUND: Until now there has been no way of distinguishing between physiological and epileptic hippocampal ripples in intracranial recordings. In the present study we addressed this by investigating the effect of cognitive stimulation on interictal high frequency oscillations in the ripple range (80-250 Hz) within epileptic (EH) and non-epileptic hippocampus (NH). METHODS: We analyzed depth EEG recordings in 10 patients with intractable epilepsy, in whom hippocampal activity was recorded initially during quiet wakefulness and subsequently during a simple cognitive task. Using automated detection of ripples based on amplitude of the power envelope, we analyzed ripple rate (RR) in the cognitive and resting period, within EH and NH. RESULTS: Compared to quiet wakefulness we observed a significant reduction of RR during cognitive stimulation in EH, while it remained statistically marginal in NH. Further, we investigated the direct impact of cognitive stimuli on ripples (i.e. immediately post-stimulus), which showed a transient statistically significant suppression of ripples in the first second after stimuli onset in NH only. CONCLUSION: Our results point to a differential reactivity of ripples within EH and NH to cognitive stimulation.
- MeSH
- Wakefulness MeSH
- Adult MeSH
- Electroencephalography MeSH
- Epilepsy physiopathology MeSH
- Hippocampus physiopathology MeSH
- Electrodes, Implanted MeSH
- Cognition physiology MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Neuropsychological Tests MeSH
- Rest MeSH
- Pattern Recognition, Automated MeSH
- Visual Perception physiology MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
What is the neural substrate of our capability to properly react to changes in the environment? It can be hypothesized that the anterior cingulate cortex (ACC) manages repetitive stimuli in routine conditions and alerts the dorsolateral prefrontal cortex (PFC) when stimulation unexpectedly changes. To provide evidence in favor of this hypothesis, intracerebral stereoelectroencephalographic (SEEG) data were recorded from the anterior cingulate and dorsolateral PFC of eight epileptic patients in a standard visual oddball task during presurgical monitoring. Two types of stimuli (200 ms duration) such as the letters O (frequent stimuli; 80% of probability) and X (rare stimuli) were presented in random order, with an interstimulus interval between 2 and 5 s. Subjects had to mentally count the rare (target) stimuli and to press a button with their dominant hand as quickly and accurately as possible. EEG frequency bands of interest were theta (4-8 Hz), alpha (8-12 Hz), beta (14-30 Hz), and gamma (30-45 Hz). The directionality of the information flux within the EEG rhythms was indexed by a directed transfer function (DTF). The results showed that compared with the frequent stimuli, the target stimuli induced a statistically significant increase of DTF values from the anterior cingulate to the dorsolateral PFC at the theta rhythms (P < 0.01). These results provide support to the hypothesis that ACC directly or indirectly affects the oscillatory activity of dorsolateral PFC by a selective frequency code under typical oddball conditions.
- MeSH
- Action Potentials physiology MeSH
- Biological Clocks physiology MeSH
- Gyrus Cinguli anatomy & histology physiology MeSH
- Adult MeSH
- Mental Processes physiology MeSH
- Electroencephalography methods MeSH
- Evoked Potentials physiology MeSH
- Data Interpretation, Statistical MeSH
- Cognition physiology MeSH
- Humans MeSH
- Brain Mapping MeSH
- Young Adult MeSH
- Neural Pathways anatomy & histology physiology MeSH
- Neurons physiology MeSH
- Neuropsychological Tests MeSH
- Signal Processing, Computer-Assisted MeSH
- Prefrontal Cortex anatomy & histology physiology MeSH
- Photic Stimulation MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH