Nejvíce citovaný článek - PubMed ID 16028092
Seed, dispersal, microsite, habitat and recruitment limitation: identification of terms and concepts in studies of limitations
Many grasslands have disappeared over the last century as a result of anthropogenic land use intensification, while new patches are emerging through abandonment of arable fields. Here, we compared species (SD), functional (FD) and phylogenetic (PD) (alpha) diversity among 272 dry grassland patches of two age-classes: old and new, with the new patches being dry grasslands established on previous intensively managed fields during the last 30 years. We first compared SD, FD and PD, between patches of different age. Then, we performed generalized linear models to determine the influence of abiotic, present-day and historical landscape configuration variables on SD, FD and PD. By measuring abiotic variables, we explained the effect of environmental filtering on species diversity, whereas the present-day and historical landscape configuration variables were included to describe how the spatial and temporal configuration of the patches influence patterns of species. Finally, we applied partial regressions to explore the relative importance of abiotic, present-day and historical variables in explaining the diversity metrics and how this varies between patches of different ages. We found higher SD in the old compared to the new patches, but no changes in FD and PD. SD was mostly affected by abiotic and present-day landscape configuration variables in the new and the old patches, respectively. In the new patches, historical variables explained variation in the FD, while present-day variables explained the PD. In the old patches, historical variables accounted for most of the variation in both FD and PD. Our evidence suggests that the relative importance of assembly processes has changed over time, showing that environmental filtering and changes in the landscape configuration prevented the establishment of species in the new patches. However, the loss of species (i.e. SD) is not necessarily linked to a loss of functions and evolutionary potential.
The family of orchids involves a number of critically endangered species. Understanding of drivers of their landscape distribution could provide a valuable insight into their decline. Our objectives were to develop models predicting distribution of selected orchid species-four co-occurring forest orchid species, Cephalanthera rubra, Epipactis atrorubens, E. helleborine, and Neottia nidus-avis-at a landscape scale using a wide range of habitat characteristics. Subsequently, we compared the model predictions with species occurrence and the results of the field germination experiment while considering two germination stages-asymbiotic (early stage) and symbiotic. And finally, we attempted to identify possible drivers of species' landscape distribution (i.e., dispersal, availability of habitat patches, or fungal associates). We have discovered that different habitat characteristics determined the distribution of different orchids. The species also differed in terms of availability of suitable habitat patches and patch occupancy (the highest being E. atrorubens with 80%). Landscape distribution of the species was primarily restricted by the availability of fungal associates (the most important factor for C. rubra) and by the availability of suitable habitat patches (the most important in case of N. nidus-avis). Despite expected easy dispersal of spores, orchid distribution seems to be limited by the availability of fungal associates in the landscape. In contrast, the availability of orchid seeds does not seem to limit their distribution. These results can provide useful guidelines for conservation of the studied species.
- Klíčová slova
- Dispersal limitation, Field experiment, Habitat limitation, Habitat occupancy, Mycorrhiza,
- MeSH
- ekosystém MeSH
- klíčení MeSH
- lesy MeSH
- mykorhiza * MeSH
- Orchidaceae * MeSH
- symbióza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
After abandonment of agricultural fields, some grassland plant species colonize these sites with a frequency equivalent to dry grasslands (generalists) while others are missing or underrepresented in abandoned fields (specialists). We aimed to understand the inability of specialists to spread on abandoned fields by exploring whether performance of generalists and specialists depended on soil abiotic and/or biotic legacy. We performed a greenhouse experiment with 12 species, six specialists and six generalists. The plants were grown in sterile soil from dry grassland or abandoned field inoculated with microbial communities from one or the other site. Plant growth, abundance of mycorrhizal structures and plant response to inoculation were evaluated. We focused on arbuscular mycorrhizal fungi (AMF), one of the most important parts of soil communities affecting plant performance. The abandoned field soil negatively affected plant growth, but positively affected plant response to inoculation. The AMF community from both sites differed in infectivity and taxa frequencies. The lower AMF taxa frequency in the dry grassland soil suggested a lack of functional complementarity. Despite the fact that dry grassland AMF produced more arbuscules, the dry grassland inoculum did not improve phosphorus nutrition of specialists contrary to the abandoned field inoculum. Inoculum origin did not affect phosphorus nutrition of generalists. The lower effectiveness of the dry grassland microbial community toward plant performance excludes its inoculation in the abandoned field soil as a solution to allow settlement of specialists. Still, the distinct response of specialists and generalists to inoculation suggested that they differ in AMF responsiveness.
- Klíčová slova
- Fungal structures, Mycorrhizal response, Native AMF, Soil biota, Soil legacy,
- MeSH
- houby MeSH
- kořeny rostlin MeSH
- mikrobiota * MeSH
- mykorhiza * MeSH
- pastviny MeSH
- půda MeSH
- půdní mikrobiologie MeSH
- vývoj rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- půda MeSH
BACKGROUND: Field translocation experiments (i.e., the introduction of seeds or seedlings of different species into different localities) are commonly used to study habitat associations of species, as well as factors limiting species distributions and local abundances. Species planted or sown in sites where they naturally occur are expected to perform better or equally well compared to sites at which they do not occur or are rare. This, however, contrasts with the predictions of the Janzen-Connell hypothesis and commonly reported intraspecific negative plant-soil feedback. The few previous studies indicating poorer performance of plants at sites where they naturally occur did not explore the mechanisms behind this pattern. AIMS AND METHODS: In this study, we used field translocation experiments established using both seeds and seedlings to study the determinants of local abundance of four dominant species in grasslands. To explore the possible effects of intraspecific negative plant-soil feedback on our results, we tested the effect of local species abundance on the performance of the plants in the field experiment. In addition, we set up a garden experiment to explore the intensity of intraspecific as well as interspecific feedback between the dominants used in the experiment. KEY RESULTS: In some cases, the distribution and local abundances of the species were partly driven by habitat conditions at the sites, and species performed better at their own sites. However, the prevailing pattern was that the local dominants performed worse at sites where they naturally occur than at any other sites. Moreover, the success of plants in the field experiment was lower in the case of higher intraspecific abundance prior to experimental setup. In the garden feedback experiment, two of the species performed significantly worse in soils conditioned by their species than in soils conditioned by the other species. In addition, the performance of the plants was significantly correlated between the two experiments, suggesting that plant-soil feedback is a likely explanation of the patterns observed in the field. CONCLUSIONS: All of the results indicate that intraspecific negative plant-soil feedback, either biotic or abiotic, may be a key factor determining the performance of the plants in our field translocation experiment. The possible effects of negative feedback should thus be considered when evaluating results of translocation experiments in future studies.
- MeSH
- ekosystém * MeSH
- pastviny MeSH
- půda * chemie MeSH
- rostliny * MeSH
- semenáček MeSH
- zahrady MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- půda * MeSH
Successful establishment of plants is limited by both biotic and abiotic conditions and their interactions. Seedling establishment is also used as a direct measure of habitat suitability, but transient changes in vegetation might provide windows of opportunity allowing plant species to colonize sites which otherwise appear unsuitable. We aimed to study spatio-temporal variability in the effects of resident vegetation on establishment, growth and reproduction of dry grassland species in abandoned arable fields representing potentially suitable habitats. Seeds were sown in disturbed (bare of vegetation and roots) and undisturbed plots in three fields abandoned in the last 20 years. To assess the effects of temporal variation on plant establishment, we initiated our experiments in two years (2007 and 2008). Seventeen out of the 35 sown species flowered within two years after sowing, while three species completely failed to become established. The vegetation in the undisturbed plots facilitated seedling establishment only in the year with low spring precipitation, and the effect did not hold for all species. In contrast, growth and flowering rate were consistently much greater in the disturbed plots, but the effect size differed between the fields and years of sowing. We show that colonization is more successful when site opening by disturbance coincide with other suitable conditions such as weather or soil characteristics. Seasonal variability involved in our study emphasizes the necessity of temporal replication of sowing experiments. Studies assessing habitat suitability by seed sowing should either involve both vegetation removal treatments and untreated plots or follow the gradient of vegetation cover. We strongly recommend following the numbers of established individuals, their sizes and reproductive success when assessing habitat suitability by seed sowing since one can gain completely different results in different phases of plant life cycle.
- MeSH
- druhová specificita MeSH
- ekosystém MeSH
- květy růst a vývoj MeSH
- lipnicovité růst a vývoj MeSH
- Magnoliopsida růst a vývoj MeSH
- půda MeSH
- roční období MeSH
- semena rostlinná růst a vývoj MeSH
- semenáček růst a vývoj MeSH
- zemědělství MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- půda MeSH
The maintenance of separated diploid and polyploid populations within a contact zone is possible due to both prezygotic and postzygotic isolation mechanisms. Niche differentiation between two cytotypes may be an important prezygotic isolating mechanism and can be studied using reciprocal transplant experiments. We investigated niche differentiation between diploid and hexaploid Aster amellus in their contact zone in the Czech Republic. Diploid populations are confined to habitats with low productivity, whereas hexaploid populations occur in habitats with both low and high productivity. Thus, we chose three diploid populations and six hexaploid populations, three in each of the two different habitat types. We analyzed habitat characteristics and carried out reciprocal transplant experiments in the field using both seeds and adult plants. Sites of diploid and hexaploid populations differed significantly in vegetation and soil properties. The mean number of juveniles was higher at sites of home ploidy level than at sites of foreign ploidy level, suggesting niche differentiation between the two cytotypes. On the other hand, transplanted adult plants survived at all sites and juvenile plants were able to establish at some sites of the foreign cytotype. Furthermore, the mean number of juveniles, survival, and flowering percentages were higher at home sites than at foreign sites, indicating local adaptation. We conclude that niche differentiation between the two cytotypes and local adaptation within each cytotype may contribute to the maintenance of diploid and hexaploid populations of A. amellus in their contact zone. Moreover, further factors, such as differences in flowering phenology and exclusion of minority cytotypes, should also be considered.
- MeSH
- Aster genetika růst a vývoj MeSH
- diploidie * MeSH
- ekosystém * MeSH
- polyploidie * MeSH
- půda MeSH
- semena rostlinná růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- půda MeSH