Nejvíce citovaný článek - PubMed ID 16093707
BACKGROUND: Cultivated grasses are an important source of food for domestic animals worldwide. Increased knowledge of their genomes can speed up the development of new cultivars with better quality and greater resistance to biotic and abiotic stresses. The most widely grown grasses are tetraploid ryegrass species (Lolium) and diploid and hexaploid fescue species (Festuca). In this work, we characterized repetitive DNA sequences and their contribution to genome size in five fescue and two ryegrass species as well as one fescue and two ryegrass cultivars. RESULTS: Partial genome sequences produced by Illumina sequencing technology were used for genome-wide comparative analyses with the RepeatExplorer pipeline. Retrotransposons were the most abundant repeat type in all seven grass species. The Athila element of the Ty3/gypsy family showed the most striking differences in copy number between fescues and ryegrasses. The sequence data enabled the assembly of the long terminal repeat (LTR) element Fesreba, which is highly enriched in centromeric and (peri)centromeric regions in all species. A combination of fluorescence in situ hybridization (FISH) with a probe specific to the Fesreba element and immunostaining with centromeric histone H3 (CENH3) antibody showed their co-localization and indicated a possible role of Fesreba in centromere function. CONCLUSIONS: Comparative repeatome analyses in a set of fescues and ryegrasses provided new insights into their genome organization and divergence, including the assembly of the LTR element Fesreba. A new LTR element Fesreba was identified and found in abundance in centromeric regions of the fescues and ryegrasses. It may play a role in the function of their centromeres.
- Klíčová slova
- Centromere organization, Festuca, Illumina sequencing, Lolium, Repetitive DNA,
- MeSH
- centromera genetika MeSH
- chromozomy rostlin * MeSH
- Festuca genetika MeSH
- genom rostlinný genetika MeSH
- jílek genetika MeSH
- repetitivní sekvence nukleových kyselin * MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Plant LTR-retrotransposons are classified into two superfamilies, Ty1/copia and Ty3/gypsy. They are further divided into an enormous number of families which are, due to the high diversity of their nucleotide sequences, usually specific to a single or a group of closely related species. Previous attempts to group these families into broader categories reflecting their phylogenetic relationships were limited either to analyzing a narrow range of plant species or to analyzing a small numbers of elements. Furthermore, there is no reference database that allows for similarity based classification of LTR-retrotransposons. RESULTS: We have assembled a database of retrotransposon encoded polyprotein domains sequences extracted from 5410 Ty1/copia elements and 8453 Ty3/gypsy elements sampled from 80 species representing major groups of green plants (Viridiplantae). Phylogenetic analysis of the three most conserved polyprotein domains (RT, RH and INT) led to dividing Ty1/copia and Ty3/gypsy retrotransposons into 16 and 14 lineages respectively. We also characterized various features of LTR-retrotransposon sequences including additional polyprotein domains, extra open reading frames and primer binding sites, and found that the occurrence and/or type of these features correlates with phylogenies inferred from the three protein domains. CONCLUSIONS: We have established an improved classification system applicable to LTR-retrotransposons from a wide range of plant species. This system reflects phylogenetic relationships as well as distinct sequence and structural features of the elements. A comprehensive database of retrotransposon protein domains (REXdb) that reflects this classification provides a reference for efficient and unified annotation of LTR-retrotransposons in plant genomes. Access to REXdb related tools is implemented in the RepeatExplorer web server (https://repeatexplorer-elixir.cerit-sc.cz/) or using a standalone version of REXdb that can be downloaded seaparately from RepeatExplorer web page (http://repeatexplorer.org/).
- Klíčová slova
- LTR-retrotransposons, Polyprotein domains, Primer binding site, RepeatExplorer, Transposable elements,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The centromeric and pericentromeric regions of plant chromosomes are colonized by Ty3/gypsy retrotransposons, which, on the basis of their reverse transcriptase sequences, form the chromovirus CRM clade. Despite their potential importance for centromere evolution and function, they have remained poorly characterized. In this work, we aimed to carry out a comprehensive survey of CRM clade elements with an emphasis on their diversity, structure, chromosomal distribution and transcriptional activity. RESULTS: We have surveyed a set of 190 CRM elements belonging to 81 different retrotransposon families, derived from 33 host species and falling into 12 plant families. The sequences at the C-terminus of their integrases were unexpectedly heterogeneous, despite the understanding that they are responsible for targeting to the centromere. This variation allowed the division of the CRM clade into the three groups A, B and C, and the members of each differed considerably with respect to their chromosomal distribution. The differences in chromosomal distribution coincided with variation in the integrase C-terminus sequences possessing a putative targeting domain (PTD). A majority of the group A elements possess the CR motif and are concentrated in the centromeric region, while members of group C have the type II chromodomain and are dispersed throughout the genome. Although representatives of the group B lack a PTD of any type, they appeared to be localized preferentially in the centromeres of tested species. All tested elements were found to be transcriptionally active. CONCLUSIONS: Comprehensive analysis of the CRM clade elements showed that genuinely centromeric retrotransposons represent only a fraction of the CRM clade (group A). These centromeric retrotransposons represent an active component of centromeres of a wide range of angiosperm species, implying that they play an important role in plant centromere evolution. In addition, their transcriptional activity is consistent with the notion that the transcription of centromeric retrotransposons has a role in normal centromere function.
- Publikační typ
- časopisecké články MeSH