Nejvíce citovaný článek - PubMed ID 16157796
Early endothelin-A receptor blockade decreases blood pressure and ameliorates end-organ damage in homozygous Ren-2 rats
The study of ontogenetic aspects of water and electrolyte metabolism performed in the Institute of Physiology (Czechoslovak Academy of Sciences) led to the research on the increased susceptibility of immature rats to salt-dependent forms of hypertension since 1966. Hemodynamic studies in developing rats paved the way to the evaluation of hemodynamic mechanisms during the development of genetic hypertension in SHR. A particular attention was focused on altered renal function and kidney damage in both salt and genetic hypertension with a special respect to renin-angiotensin system. Renal damage associated with hypertension progression was in the center of interest of several research groups in Prague. The alterations in ion transport, cell calcium handling and membrane structure as well as their relationship to abnormal lipid metabolism were studied in a close cooperation with laboratories in Munich, Glasgow, Montreal and Paris. The role of NO and oxidative stress in various forms of hypertension was a subject of a joint research with our Slovak colleagues focused mainly on NO-deficient hypertension elicited by chronic L-NAME administration. Finally, we adopted a method enabling us to evaluate the balance of vasoconstrictor and vasodilator mechanisms in BP maintenance. Using this method we demonstrated sympathetic hyperactivity and relative NO deficiency in rats with either salt-dependent or genetic hypertension. At the end of the first decennium of this century we were ready to modify our traditional approach towards modern trends in the research of experimental hypertension. Keywords: Salt-dependent hypertension o Genetic hypertension o Body fluids o Hemodynamics o Ion transport o Cell membrane structure and function o Renal function o Renin-angiotensin systems.
- MeSH
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- hypertenze * metabolismus patofyziologie MeSH
- krevní tlak MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- renin-angiotensin systém MeSH
- zvířata MeSH
- Check Tag
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
The agonists of alpha(2)-adrenergic receptors such as clonidine, rilmenidine or monoxidine are known to lower blood pressure (BP) through a reduction of brain sympathetic outflow but their chronic antihypertensive effects in rats with low-renin or high-renin forms of experimental hypertension were not studied yet. Moreover, there is no comparison of mechanisms underlying BP reduction elicited by chronic peroral (po) or intracerebroventricular (icv) clonidine treatment. Male salt-sensitive Dahl rats fed 4% NaCl diet and Ren-2 transgenic rats were treated with clonidine administered either in the drinking fluid (0.5 mg/kg/day po) or as the infusion into lateral brain ventricle (0.1 mg/kg/day icv) for 4 weeks. Basal BP and the contributions of renin-angiotensin system (captopril 10 mg/kg iv) or sympathetic nervous system (pentolinium 5 mg/kg iv) to BP maintenance were determined in conscious cannulated rats at the end of the study. Both peroral and intracerebroventricular clonidine treatment lowered BP to the same extent in either rat model. However, in both models chronic clonidine treatment reduced sympathetic BP component only in rats treated intracerebroventricularly but not in perorally treated animals. In contrast, peroral clonidine treatment reduced angiotensin II-dependent vasoconstriction in Ren-2 transgenic rats, whereas it lowered residual blood pressure in Dahl rats. In conclusions, our results indicate different mechanisms of antihypertensive action of clonidine when administered centrally or systemically.
- MeSH
- angiotensin II farmakologie MeSH
- antihypertenziva farmakologie MeSH
- chlorid sodný MeSH
- clonidin farmakologie MeSH
- hypertenze * chemicky indukované farmakoterapie MeSH
- hypotenze * MeSH
- krevní tlak MeSH
- krysa rodu Rattus MeSH
- kuchyňská sůl MeSH
- potkani inbrední Dahl MeSH
- potkani transgenní MeSH
- renin MeSH
- sympatický nervový systém MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- angiotensin II MeSH
- antihypertenziva MeSH
- chlorid sodný MeSH
- clonidin MeSH
- kuchyňská sůl MeSH
- renin MeSH
INTRODUCTION: Previous studies in Ren-2 transgenic hypertensive rats (TGR) after 5/6 renal ablation (5/6 NX) have shown that besides pharmacological blockade of the renin-angiotensin system (RAS) also increasing kidney tissue epoxyeicosatrienoic acids (EET) levels by blocking soluble epoxide hydrolase (sEH), an enzyme responsible for degradation of EETs, and endothelin type A (ETA) receptor blockade retards chronic kidney disease (CKD) progression. This prompted us to evaluate if this progression will be alleviated by the addition of sEH inhibitor and ETA receptor antagonist to the standard complex blockade of RAS (angiotensin-converting enzyme inhibitor plus angiotensin II type 1 receptor blocker) in rats with established CKD. METHODS: The treatment regimens were initiated 6 weeks after 5/6 NX in TGR, and the follow-up period was 60 weeks. RESULTS: The addition of sEH inhibition to RAS blockade improved survival rate, further reduced albuminuria and renal glomerular and kidney tubulointerstitial injury, and attenuated the decline in creatinine clearance - all this as compared with 5/6 NX TGR treated with RAS blockade alone. Addition of ETA receptor antagonist to the combined RAS and sEH blockade not only offered no additional renoprotection but, surprisingly, also abolished the beneficial effects of adding sEH inhibitor to the RAS blockade. CONCLUSION: These data indicate that pharmacological strategies that combine the blockade of RAS and sEH could be a novel tool to combat the progression of CKD. Any attempts to further extend this therapeutic regimen should be made with extreme caution.
- Klíčová slova
- 5/6 Renal mass reduction, Chronic kidney disease, Endothelin A receptor blocker, Hypertension, Renin-angiotensin system, Soluble epoxide hydrolase inhibitor,
- MeSH
- antagonisté endotelinového receptoru A farmakologie MeSH
- chronická renální insuficience prevence a kontrola MeSH
- epoxid hydrolasy antagonisté a inhibitory MeSH
- hypertenze MeSH
- krysa rodu Rattus MeSH
- nefrektomie MeSH
- potkani transgenní MeSH
- receptor endotelinu A MeSH
- renin-angiotensin systém účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antagonisté endotelinového receptoru A MeSH
- epoxid hydrolasy MeSH
- receptor endotelinu A MeSH