Nejvíce citovaný článek - PubMed ID 16177789
We currently lack a predictive understanding of how soil archaeal communities may respond to climate change, particularly in Alpine areas where warming is far exceeding the global average. Here, we characterized the abundance, structure, and function of total (by metagenomics) and active soil archaea (by metatranscriptomics) after 5-year experimental field warming (+1°C) in Italian Alpine grasslands and snowbeds. Our multi-omics approach unveiled an increasing abundance of Archaea during warming in snowbeds, which was negatively correlated with the abundance of fungi (by qPCR) and micronutrients (Ca and Mg), but positively correlated with soil water content. In the snowbeds transcripts, warming resulted in the enrichment of abundances of transcription and nucleotide biosynthesis. Our study provides novel insights into possible changes in soil Archaea composition and function in the climate change scenario.
- MeSH
- Archaea * genetika MeSH
- klimatické změny MeSH
- multiomika MeSH
- půda * chemie MeSH
- půdní mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Itálie MeSH
- Názvy látek
- půda * MeSH
Microbial biomass is a key parameter needed for the quantification of microbial turnover rates and their contribution to the biogeochemical element cycles. However, estimates of microbial biomass rely on empirically derived mass-to-volume relationships, and large discrepancies exist between the available empirical conversion factors. Here we report a significant nonlinear relationship between carbon mass and cell volume ([Formula: see text]; [Formula: see text]) based on direct cell mass, volume, and elemental composition measurements of 12 prokaryotic species with average volumes between 0.011 and 0.705 μm3 The carbon mass density of our measured cells ranged from 250 to 1,800 fg of C μm-3 for the measured cell volumes. Compared to other currently used models, our relationship yielded up to 300% higher carbon mass values. A compilation of our and previously published data showed that cells with larger volumes (>0.5 μm3) display a constant (carbon) mass-to-volume ratio, whereas cells with volumes below 0.5 μm3 exhibit a nonlinear increase in (carbon) mass density with decreasing volume. Small microorganisms dominate marine and freshwater bacterioplankton as well as soils and marine and terrestrial subsurface. The application of our experimentally determined conversion factors will help to quantify the true contribution of these microorganisms to ecosystem functions and global microbial biomass.IMPORTANCE Microorganisms are a major component of Earth's biosphere, and their activity significantly affects the biogeochemical cycling of bioavailable elements. To correctly determine the flux of carbon and energy in the environment, reliable estimates of microbial abundances and cellular carbon content are necessary. However, accurate assessments of cellular carbon content and dry weight are not trivial to obtain. Here we report direct measurements of cell dry and carbon mass of environmentally relevant prokaryotic microorganisms using a microfluidic mass sensor. We show a significant nonlinear relationship between carbon mass and cell volume and discuss this relationship in the light of currently used cellular mass models.
- Klíčová slova
- bacterioplankton, carbon content, microbial biomass, microorganisms, subsurface,
- MeSH
- Bacteria chemie MeSH
- biomasa MeSH
- fyziologie bakterií * MeSH
- mořská voda mikrobiologie MeSH
- půdní mikrobiologie * MeSH
- sladká voda mikrobiologie MeSH
- uhlík analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- uhlík MeSH
Niche specialization of nitrifying prokaryotes is usually studied with tools targeting molecules involved in the oxidation of ammonia and nitrite. The ecological significance of diverse CO2 fixation strategies used by nitrifiers is, however, mostly unexplored. By analyzing autotrophy-related genes in combination with amoA marker genes based on droplet digitial PCR and CARD-FISH counts targeting rRNA, we quantified the distribution of nitrifiers in eight stratified lakes. Ammonia oxidizing (AO) Thaumarchaeota using the 3-hydroxypropionate/4-hydroxybutyrate pathway dominated deep and oligotrophic lakes, whereas Nitrosomonas-related taxa employing the Calvin cycle were important AO bacteria in smaller lakes. The occurrence of nitrite oxidizing Nitrospira, assimilating CO2 with the reductive TCA cycle, was strongly correlated with the distribution of Thaumarchaeota. Recently discovered complete ammonia-oxidizing bacteria (comammox) belonging to Nitrospira accounted only for a very small fraction of ammonia oxidizers (AOs) present at the study sites. Altogether, this study gives a first insight on how physicochemical characteristics in lakes are associated to the distribution of nitrifying prokaryotes with different CO2 fixation strategies. Our investigations also evaluate the suitability of functional genes associated with individual CO2 assimilation pathways to study niche preferences of different guilds of nitrifying microorganisms based on an autotrophic perspective.
- MeSH
- amoniak metabolismus MeSH
- Archaea klasifikace genetika izolace a purifikace metabolismus MeSH
- autotrofní procesy MeSH
- bakterie fixující dusík klasifikace genetika izolace a purifikace metabolismus MeSH
- dusitany metabolismus MeSH
- jezera mikrobiologie MeSH
- koloběh uhlíku * genetika MeSH
- oxidace-redukce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amoniak MeSH
- dusitany MeSH
UNLABELLED: The deep sea is a massive, largely oligotrophic ecosystem, stretched over nearly 65% of the planet's surface. Deep-sea planktonic communities are almost completely dependent upon organic carbon sinking from the productive surface, forming a vital component of global biogeochemical cycles. However, despite their importance, viruses from the deep ocean remain largely unknown. Here, we describe the first complete genomes of deep-sea viruses assembled from metagenomic fosmid libraries. "Candidatus Pelagibacter" (SAR11) phage HTVC010P and Puniceispirillum phage HMO-2011 are considered the most abundant cultured marine viruses known to date. Remarkably, some of the viruses described here recruited as many reads from deep waters as these viruses do in the photic zone, and, considering the gigantic scale of the bathypelagic habitat, these genomes provide information about what could be some of the most abundant viruses in the world at large. Their role in the viral shunt in the global ocean could be very significant. Despite the challenges encountered in inferring the identity of their hosts, we identified one virus predicted to infect members of the globally distributed SAR11 cluster. We also identified a number of putative proviruses from diverse taxa, including deltaproteobacteria, bacteroidetes, SAR11, and gammaproteobacteria. Moreover, our findings also indicate that lysogeny is the preferred mode of existence for deep-sea viruses inhabiting an energy-limited environment, in sharp contrast to the predominantly lytic lifestyle of their photic-zone counterparts. Some of the viruses show a widespread distribution, supporting the tenet "everything is everywhere" for the deep-ocean virome. IMPORTANCE: The deep sea is among the largest known habitats and a critical cog in biogeochemical cycling but remains underexplored in its microbiology. Even more than is the case for its prokaryotic community, our knowledge of its viral component has remained limited by the paucity of information provided by studies dependent upon short sequence fragments. In this work, we attempt to fill this existing gap by using a combination of classical fosmid libraries with next-generation sequencing and assembly to recover long viral genomic fragments. We have sequenced ca. 6,000 fosmids from two metagenomics libraries made from prokaryotic biomass from the deep Mediterranean Sea and recovered twenty-eight complete viral genomes, all of them novel and quite distinct from all previously described viral genomes. They are preferentially found in deeper waters and are widely distributed all over the oceans. To our knowledge, this is the first report on complete and cosmopolitan viral genomes from the bathypelagic habitat.
- MeSH
- bakteriofágy klasifikace genetika izolace a purifikace MeSH
- fylogeneze MeSH
- genom virový * MeSH
- metagenomika MeSH
- mořská voda mikrobiologie MeSH
- oceány a moře * MeSH
- profágy klasifikace genetika izolace a purifikace MeSH
- sekvenční homologie MeSH
- syntenie MeSH
- virové proteiny genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- oceány a moře * MeSH
- Názvy látek
- virové proteiny MeSH