Nejvíce citovaný článek - PubMed ID 16348931
The Trichodesmium genus comprises some of the most abundant N2-fixing organisms in oligotrophic marine ecosystems. Since nitrogenase, the key enzyme for N2 fixation, is irreversibly inhibited upon O2 exposure, these organisms have to coordinate their N2-fixing ability with simultaneous photosynthetic O2 production. Although being the principal object of many laboratory and field studies, the overall process of how Trichodesmium reconciles these two mutually exclusive processes remains unresolved. This is in part due to contradictory results that fuel the Trichodesmium enigma. In this review, we sift through methodological details that could potentially explain the discrepancy between findings related to Trichodesmium's physiology. In doing so, we exhaustively contrast studies concerning both spatial and temporal nitrogenase protective strategies, with particular attention to more recent insights. Finally, we suggest new experimental approaches for solving the complex orchestration of N2 fixation and photosynthesis in Trichodesmium.
- Klíčová slova
- O2-scavenging mechanisms, cyanobacteria, diazocyte, immunolabelling, method comparison, microscopy,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Trichodesmium is an important dinitrogen (N2)-fixing cyanobacterium in marine ecosystems. Recent nucleic acid analyses indicate that Trichodesmium colonies with their diverse epibionts support various nitrogen (N) transformations beyond N2 fixation. However, rates of these transformations and concentration gradients of N compounds in Trichodesmium colonies remain largely unresolved. We combined isotope-tracer incubations, micro-profiling and numeric modelling to explore carbon fixation, N cycling processes as well as oxygen, ammonium and nitrate concentration gradients in individual field-sampled Trichodesmium colonies. Colonies were net-autotrophic, with carbon and N2 fixation occurring mostly during the day. Ten percent of the fixed N was released as ammonium after 12-h incubations. Nitrification was not detectable but nitrate consumption was high when nitrate was added. The consumed nitrate was partly reduced to ammonium, while denitrification was insignificant. Thus, the potential N transformation network was characterised by fixed N gain and recycling processes rather than denitrification. Oxygen concentrations within colonies were ~60-200% air-saturation. Moreover, our modelling predicted steep concentration gradients, with up to 6-fold higher ammonium concentrations, and nitrate depletion in the colony centre compared to the ambient seawater. These gradients created a chemically heterogeneous microenvironment, presumably facilitating diverse microbial metabolisms in millimetre-sized Trichodesmium colonies.
- MeSH
- amoniové sloučeniny metabolismus MeSH
- autotrofní procesy MeSH
- denitrifikace MeSH
- dusičnany metabolismus MeSH
- dusík metabolismus MeSH
- fixace dusíku MeSH
- koloběh dusíku MeSH
- koloběh uhlíku MeSH
- kyslík metabolismus MeSH
- mořská voda mikrobiologie MeSH
- nitrifikace MeSH
- oxid uhličitý metabolismus MeSH
- Trichodesmium metabolismus MeSH
- uhlík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- amoniové sloučeniny MeSH
- dusičnany MeSH
- dusík MeSH
- kyslík MeSH
- oxid uhličitý MeSH
- uhlík MeSH