Nejvíce citovaný článek - PubMed ID 16507783
BACKGROUND: An altered sympathetic nervous system is implicated in many cardiac pathologies, ranging from sudden infant death syndrome to common diseases of adulthood such as hypertension, myocardial ischemia, cardiac arrhythmias, myocardial infarction, and heart failure. Although the mechanisms responsible for disruption of this well-organized system are the subject of intensive investigations, the exact processes controlling the cardiac sympathetic nervous system are still not fully understood. A conditional knockout of the Hif1a gene was reported to affect the development of sympathetic ganglia and sympathetic innervation of the heart. This study characterized how the combination of HIF-1α deficiency and streptozotocin (STZ)-induced diabetes affects the cardiac sympathetic nervous system and heart function of adult animals. METHODS: Molecular characteristics of Hif1a deficient sympathetic neurons were identified by RNA sequencing. Diabetes was induced in Hif1a knockout and control mice by low doses of STZ treatment. Heart function was assessed by echocardiography. Mechanisms involved in adverse structural remodeling of the myocardium, i.e. advanced glycation end products, fibrosis, cell death, and inflammation, was assessed by immunohistological analyses. RESULTS: We demonstrated that the deletion of Hif1a alters the transcriptome of sympathetic neurons, and that diabetic mice with the Hif1a-deficient sympathetic system have significant systolic dysfunction, worsened cardiac sympathetic innervation, and structural remodeling of the myocardium. CONCLUSIONS: We provide evidence that the combination of diabetes and the Hif1a deficient sympathetic nervous system results in compromised cardiac performance and accelerated adverse myocardial remodeling, associated with the progression of diabetic cardiomyopathy.
- Klíčová slova
- Cardiac function, Collagen deposition, Diabetic cardiomyopathy, Inflammation, Sympathetic neurons,
- MeSH
- diabetická kardiomyopatie * genetika MeSH
- experimentální diabetes mellitus * chemicky indukované genetika komplikace MeSH
- myokard metabolismus MeSH
- myši MeSH
- srdce inervace MeSH
- sympatický nervový systém metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Hif1a protein, mouse MeSH Prohlížeč
BACKGROUND: Epidemiological studies show that maternal diabetes predisposes offspring to cardiovascular and metabolic disorders. However, the precise mechanisms for the underlying penetrance and disease predisposition remain poorly understood. We examined whether hypoxia-inducible factor 1 alpha, in combination with exposure to a diabetic intrauterine environment, influences the function and molecular structure of the adult offspring heart. METHODS AND RESULTS: In a mouse model, we demonstrated that haploinsufficient (Hif1a+/-) offspring from a diabetic pregnancy developed left ventricle dysfunction at 12 weeks of age, as manifested by decreased fractional shortening and structural remodeling of the myocardium. Transcriptional profiling by RNA-seq revealed significant transcriptome changes in the left ventricle of diabetes-exposed Hif1a+/- offspring associated with development, metabolism, apoptosis, and blood vessel physiology. In contrast, both wild type and Hif1a+/- offspring from diabetic pregnancies showed changes in immune system processes and inflammatory responses. Immunohistochemical analyses demonstrated that the combination of haploinsufficiency of Hif1a and exposure to maternal diabetes resulted in impaired macrophage infiltration, increased levels of advanced glycation end products, and changes in vascular homeostasis in the adult offspring heart. CONCLUSIONS: Together our findings provide evidence that a global reduction in Hif1a gene dosage increases predisposition of the offspring exposed to maternal diabetes to cardiac dysfunction, and also underscore Hif1a as a critical factor in the fetal programming of adult cardiovascular disease.
- Klíčová slova
- Echocardiography, Fetal programming, Heart remodelling, Hif1a haploinsufficiency, Maternal diabetes,
- MeSH
- experimentální diabetes mellitus komplikace metabolismus patologie MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa genetika metabolismus MeSH
- funkce levé komory srdeční MeSH
- gestační diabetes * metabolismus patologie MeSH
- haploinsuficience MeSH
- interakce genů a prostředí MeSH
- kardiovaskulární nemoci genetika metabolismus patologie patofyziologie MeSH
- mutace * MeSH
- myokard metabolismus patologie MeSH
- myši knockoutované MeSH
- remodelace komor MeSH
- rizikové faktory MeSH
- těhotenství MeSH
- vývojová regulace genové exprese MeSH
- zpožděný efekt prenatální expozice * MeSH
- zvířata MeSH
- Check Tag
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- faktor 1 indukovatelný hypoxií - podjednotka alfa MeSH
- Hif1a protein, mouse MeSH Prohlížeč
BACKGROUND: Hypoxia inducible factor 1 (HIF-1) activates protective pathways to counteract hypoxia and prevent tissue damage in conjunction with renal injury. The aim of this study was to evaluate a role of HIF-1 in diabetes-induced kidney damage. METHODS: We used a streptozotocin-induced diabetes mouse model and compared biochemical, histological and molecular parameters associated with kidney damage in Hif1α deficient (Hif1α +/- ) and wild-type mice. RESULTS: We showed that Hif1α deficiency accelerated pathological changes in the early stage of DN. Six weeks after diabetes-induction, Hif1α deficient mice showed more prominent changes in biochemical serum parameters associated with glomerular injury, increased expression of podocyte damage markers, and loss of podocytes compared to wild-type mice. These results indicate that Hif1α deficiency specifically affects podocyte survival in the early phase of DN, resulting in diabetic glomerular injury. In contrast, renal fibrosis was not affected by the global reduction of Hif1α, at least not in the early phase of diabetic exposure. CONCLUSIONS: Together our data reveal that HIF-1 has an essential role in the early response to prevent diabetes-induced tissue damage and that impaired HIF-1 signaling results in a faster progression of DN. Although the modulation of HIF-1 activity is a high-priority target for clinical treatments, further study is required to investigate HIF-1 as a potential therapeutic target for the treatment of DN.
- Klíčová slova
- Diabetic complications, Diabetic nephropathy, Hypoxia, Mouse model, Podocyte,
- MeSH
- diabetické nefropatie etiologie metabolismus patologie MeSH
- experimentální diabetes mellitus komplikace patofyziologie MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa nedostatek genetika MeSH
- modely nemocí na zvířatech * MeSH
- myši MeSH
- prognóza MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- faktor 1 indukovatelný hypoxií - podjednotka alfa MeSH
- Hif1a protein, mouse MeSH Prohlížeč
Modern lifestyle has profoundly modified human sleep habits. Sleep duration has shortened over recent decades from 8 to 6.5 hours resulting in chronic sleep deprivation. Additionally, irregular sleep, shift work and travelling across time zones lead to disruption of circadian rhythms and asynchrony between the master hypothalamic clock and pacemakers in peripheral tissues. Furthermore, obstructive sleep apnea syndrome (OSA), which affects 4 - 15% of the population, is not only characterized by impaired sleep architecture but also by repetitive hemoglobin desaturations during sleep. Epidemiological studies have identified impaired sleep as an independent risk factor for all cause of-, as well as for cardiovascular, mortality/morbidity. More recently, sleep abnormalities were causally linked to impairments in glucose homeostasis, metabolic syndrome and Type 2 Diabetes Mellitus (T2DM). This review summarized current knowledge on the metabolic alterations associated with the most prevalent sleep disturbances, i.e. short sleep duration, shift work and OSA. We have focused on various endocrine and molecular mechanisms underlying the associations between inadequate sleep quality, quantity and timing with impaired glucose tolerance, insulin resistance and pancreatic β-cell dysfunction. Of these mechanisms, the role of the hypothalamic-pituitary-adrenal axis, circadian pacemakers in peripheral tissues, adipose tissue metabolism, sympathetic nervous system activation, oxidative stress and whole-body inflammation are discussed. Additionally, the impact of intermittent hypoxia and sleep fragmentation (key components of OSA) on intracellular signaling and metabolism in muscle, liver, fat and pancreas are also examined. In summary, this review provides endocrine and molecular explanations for the associations between common sleep disturbances and the pathogenesis of T2DM.
- Klíčová slova
- Diabetes, Insulin resistance, Intermittent hypoxia, Metabolic syndrome, Obesity, Obstructive sleep apnea, Shift working, Sleep,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Diabetic cardiomyopathy is associated with a number of functional and structural pathological changes such as left ventricular dysfunction, cardiac remodeling, and apoptosis. The primary cause of diabetic cardiomyopathy is hyperglycemia, the metabolic hallmark of diabetes. Recent studies have shown that a diabetic environment suppresses hypoxia-inducible factor (HIF)-1α protein stability and function. The aim of this study was to analyze the functional role of HIF-1α in the development of diabetic cardiomyopathy. We have hypothesized that the partial deficiency of HIF-1α may compromise cardiac responses under diabetic conditions and increase susceptibility to diabetic cardiomyopathy. METHODS: Diabetes was induced by streptozotocin in wild type (Wt) and heterozygous Hif1a knock-out (Hif1a+/-) mice. Echocardiographic evaluations of left ventricular functional parameters, expression analyses by qPCR and Western blot, and cardiac histopathology assessments were performed in age-matched groups, diabetic, and non-diabetic Wt and Hif1a+/- mice. RESULTS: Five weeks after diabetes was established, a significant decrease in left ventricle fractional shortening was detected in diabetic Hif1a+/- but not in diabetic Wt mice. The combination effects of the partial deficiency of Hif1a and diabetes affected the gene expression profile of the heart, including reduced vascular endothelial growth factor A (Vegfa) expression. Adverse cardiac remodeling in the diabetic Hif1a+/- heart was shown by molecular changes in the expression of structural molecules and components of the extracellular matrix. CONCLUSIONS: We have shown a correlation between heterozygosity for Hif1α and adverse functional, molecular, and cellular changes associated with diabetic cardiomyopathy. Our results provide evidence that HIF-1α regulates early cardiac responses to diabetes, and that HIF-1α deregulation may influence the increased risk for diabetic cardiomyopathy.
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: Obstructive sleep apnea is associated with insulin resistance, glucose intolerance, and type 2 diabetes mellitus. Although several studies have suggested that intermittent hypoxia in obstructive sleep apnea may induce abnormalities in glucose homeostasis, it remains to be determined whether these abnormalities improve after discontinuation of the exposure. The objective of this study was to delineate the effects of intermittent hypoxia on glucose homeostasis, beta cell function, and liver glucose metabolism and to investigate whether the impairments improve after the hypoxic exposure is discontinued. INTERVENTIONS: C57BL6/J mice were exposed to 14 days of intermittent hypoxia, 14 days of intermittent air, or 7 days of intermittent hypoxia followed by 7 days of intermittent air (recovery paradigm). Glucose and insulin tolerance tests were performed to estimate whole-body insulin sensitivity and calculate measures of beta cell function. Oxidative stress in pancreatic tissue and glucose output from isolated hepatocytes were also assessed. RESULTS: Intermittent hypoxia increased fasting glucose levels and worsened glucose tolerance by 67% and 27%, respectively. Furthermore, intermittent hypoxia exposure was associated with impairments in insulin sensitivity and beta cell function, an increase in liver glycogen, higher hepatocyte glucose output, and an increase in oxidative stress in the pancreas. While fasting glucose levels and hepatic glucose output normalized after discontinuation of the hypoxic exposure, glucose intolerance, insulin resistance, and impairments in beta cell function persisted. CONCLUSIONS: Intermittent hypoxia induces insulin resistance, impairs beta cell function, enhances hepatocyte glucose output, and increases oxidative stress in the pancreas. Cessation of the hypoxic exposure does not fully reverse the observed changes in glucose metabolism.
- Klíčová slova
- Glucose intolerance, insulin resistance, intermittent hypoxia, obstructive sleep apnea,
- MeSH
- beta-buňky metabolismus fyziologie MeSH
- glukosa metabolismus fyziologie MeSH
- glukózový toleranční test MeSH
- homeostáza fyziologie MeSH
- hypoxie metabolismus patofyziologie MeSH
- inzulinová rezistence fyziologie MeSH
- krevní glukóza analýza fyziologie MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- obstrukční spánková apnoe metabolismus patofyziologie MeSH
- oxidační stres fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glukosa MeSH
- krevní glukóza MeSH