Nejvíce citovaný článek - PubMed ID 1658045
High-salt diets are a major cause of hypertension and cardiovascular (CV) disease. Many governments are interested in using food salt reduction programs to reduce the risk for salt-induced increases in blood pressure and CV events. It is assumed that reducing the salt concentration of processed foods will substantially reduce mean salt intake in the general population. However, contrary to expectations, reducing the sodium density of nearly all foods consumed in England by 21% had little or no effect on salt intake in the general population. This may be due to the fact that in England, as in other countries including the U.S.A., mean salt intake is already close to the lower normal physiologic limit for mean salt intake of free-living populations. Thus, mechanism-based strategies for preventing salt-induced increases in blood pressure that do not solely depend on reducing salt intake merit attention. It is now recognized that the initiation of salt-induced increases in blood pressure often involves a combination of normal increases in sodium balance, blood volume and cardiac output together with abnormal vascular resistance responses to increased salt intake. Therefore, preventing either the normal increases in sodium balance and cardiac output, or the abnormal vascular resistance responses to salt, can prevent salt-induced increases in blood pressure. Suboptimal nutrient intake is a common cause of the hemodynamic disturbances mediating salt-induced hypertension. Accordingly, efforts to identify and correct the nutrient deficiencies that promote salt sensitivity hold promise for decreasing population risk of salt-induced hypertension without requiring reductions in salt intake.
- Klíčová slova
- blood pressure, hypertension, nitrate, salt, sodium, sodium chloride,
- MeSH
- hypertenze * chemicky indukované prevence a kontrola MeSH
- kardiovaskulární nemoci * MeSH
- krevní tlak MeSH
- kuchyňská sůl škodlivé účinky MeSH
- lidé MeSH
- sodík MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kuchyňská sůl MeSH
- sodík MeSH
On average, black individuals are widely believed to be more sensitive than white individuals to blood pressure (BP) effects of changes in salt intake. However, few studies have directly compared the BP effects of changing salt intake in black versus white individuals. In this narrative review, we analyze those studies and note that when potassium intake substantially exceeds the recently recommended US dietary goal of 87 mmol/day, black adults do not appear more sensitive than white adults to BP effects of short-term or long-term increases in salt intake (from an intake ≤50 mmol/day up to 150 mmol/day or more). However, with lower potassium intakes, racial differences in salt sensitivity are observed. Mechanistic studies suggest that racial differences in salt sensitivity are related to differences in vascular resistance responses to changes in salt intake mediated by vasodilator and vasoconstrictor pathways. With respect to cause and prevention of racial disparities in salt sensitivity, it is noteworthy that 1) on average, black individuals consume less potassium than white individuals and 2) consuming supplemental potassium bicarbonate, or potassium rich foods can prevent racial disparities in salt sensitivity. However, the new US dietary guidelines reduced the dietary potassium goal well below the amount associated with preventing racial disparities in salt sensitivity. These observations should motivate research on the impact of the new dietary potassium guidelines on racial disparities in salt sensitivity, the risks and benefits of potassium-containing salt substitutes or supplements, and methods for increasing consumption of foods rich in nutrients that protect against salt-induced hypertension.
- Klíčová slova
- hypertension, nitrate, race, salt-sensitive, sodium,
- MeSH
- běloši MeSH
- černoši MeSH
- draslík dietní * MeSH
- hypertenze patofyziologie MeSH
- krevní tlak fyziologie MeSH
- lidé MeSH
- rizikové faktory MeSH
- sodík dietní * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- draslík dietní * MeSH
- sodík dietní * MeSH
To reduce the risk of salt-induced hypertension, medical authorities have emphasized dietary guidelines promoting high intakes of potassium and low intakes of salt that provide molar ratios of potassium to salt of ≥1:1. However, during the past several decades, relatively few people have changed their eating habits sufficiently to reach the recommended dietary goals for salt and potassium. Thus, new strategies that reduce the risk of salt-induced hypertension without requiring major changes in dietary habits would be of considerable medical interest. In the current studies in a widely used model of salt-induced hypertension, the Dahl salt-sensitive rat, we found that supplemental dietary sodium nitrate confers substantial protection from initiation of salt-induced hypertension when the molar ratio of added nitrate to added salt is only ≈1:170. Provision of a low molar ratio of added nitrate to added salt of ≈1:110 by supplementing the diet with beetroot also conferred substantial protection against salt-induced increases in blood pressure. The results suggest that on a molar basis and a weight basis, dietary nitrate may be ≈100× more potent than dietary potassium with respect to providing substantial resistance to the pressor effects of increased salt intake. Given that leafy green and root vegetables contain large amounts of inorganic nitrate, these findings raise the possibility that fortification of salty food products with small amounts of a nitrate-rich vegetable concentrate may provide a simple method for reducing risk for salt-induced hypertension.
- Klíčová slova
- diet, hypertension, nitric oxide, rats, sodium,
- MeSH
- Beta vulgaris * MeSH
- chlorid sodný toxicita MeSH
- dieta metody MeSH
- dusičnany aplikace a dávkování MeSH
- hypertenze chemicky indukované patofyziologie prevence a kontrola MeSH
- krevní tlak fyziologie MeSH
- krysa rodu Rattus MeSH
- modely nemocí na zvířatech MeSH
- potkani inbrední Dahl MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- chlorid sodný MeSH
- dusičnany MeSH
High salt intake is one of the major dietary determinants of hypertension and cardiovascular disease in Japan and throughout the world. Although dietary salt restriction may be of clinical benefit in salt-sensitive individuals, many individuals may not wish, or be able to, reduce their intake of salt. Thus, identification of functional foods that can help protect against mechanistic abnormalities mediating salt-induced hypertension is an issue of considerable medical and scientific interest. According to the "vasodysfunction" theory of salt-induced hypertension, the hemodynamic abnormality initiating salt-induced increases in blood pressure usually involves subnormal vasodilation and abnormally increased vascular resistance in response to increased salt intake. Because disturbances in nitric oxide activity can contribute to subnormal vasodilator responses to increased salt intake that often mediate blood pressure salt sensitivity, increased intake of functional foods that support nitric oxide activity may help to reduce the risk for salt-induced hypertension. Mounting evidence indicates that increased consumption of traditional Japanese vegetables and other vegetables with high nitrate content such as table beets and kale can promote the formation of nitric oxide through an endothelial independent pathway that involves reduction of dietary nitrate to nitrite and nitric oxide. In addition, recent studies in animal models have demonstrated that modest increases in nitrate intake can protect against the initiation of salt-induced hypertension. These observations are: (1) consistent with the view that increased intake of many traditional Japanese vegetables and other nitrate rich vegetables, and of functional foods derived from such vegetables, may help maintain healthy blood pressure despite a high salt diet; (2) support government recommendations to increase vegetable intake in the Japanese population.
- Klíčová slova
- Hypertension, Nitrate, Salt, Salt sensitivity, Sodium,
- MeSH
- funkční potraviny * MeSH
- hypertenze prevence a kontrola MeSH
- kardiovaskulární nemoci prevence a kontrola MeSH
- kuchyňská sůl škodlivé účinky MeSH
- lidé MeSH
- oxid dusnatý metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Geografické názvy
- Japonsko MeSH
- Názvy látek
- kuchyňská sůl MeSH
- oxid dusnatý MeSH