Nejvíce citovaný článek - PubMed ID 16614995
Enterotoxigenic Escherichia coli (ETEC) and Shiga toxin-producing E. coli (STEC) strains are the causative agents of severe foodborne diseases in both humans and animals. In this study, porcine pathogenic E. coli strains (n = 277) as well as porcine commensal strains (n = 188) were tested for their susceptibilities to 34 bacteriocin monoproducers to identify the most suitable bacteriocin types inhibiting porcine pathogens. Under in vitro conditions, the set of pathogenic E. coli strains was found to be significantly more susceptible to the majority of tested bacteriocins than commensal E. coli. Based on the production of bacteriocins with specific activity against pathogens, three potentially probiotic commensal E. coli strains of human origin were selected. These strains were found to be able to outcompete ETEC strains expressing F4 or F18 fimbriae in liquid culture and also decreased the severity and duration of diarrhea in piglets during experimental ETEC infection as well as pathogen numbers on the last day of in vivo experimentation. While the extents of the probiotic effect were different for each strain, the cocktail of all three strains showed the most pronounced beneficial effects, suggesting synergy between the tested E. coli strains. IMPORTANCE Increasing levels of antibiotic resistance among bacteria also increase the need for alternatives to conventional antibiotic treatment. Pathogenic Escherichia coli represents a major diarrheic infectious agent of piglets in their postweaning period; however, available measures to control these infections are limited. This study describes three novel E. coli strains producing antimicrobial compounds (bacteriocins) that actively inhibit a majority of toxigenic E. coli strains. The beneficial effect of three potentially probiotic E. coli strains was demonstrated under both in vitro and in vivo conditions. The novel probiotic candidates may be used as prophylaxis during piglets' postweaning period to overcome common infections caused by E. coli.
- Klíčová slova
- E. coli, ETEC, Escherichia, STEC, bacteriocin, pig, probiotic,
- MeSH
- bakteriální toxiny * metabolismus MeSH
- bakteriociny metabolismus terapeutické užití MeSH
- Escherichia coli * účinky léků genetika metabolismus MeSH
- faktory virulence genetika MeSH
- feces mikrobiologie MeSH
- infekce vyvolané Escherichia coli mikrobiologie prevence a kontrola veterinární MeSH
- nemoci prasat mikrobiologie prevence a kontrola MeSH
- prasata MeSH
- probiotika terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- randomizované kontrolované studie veterinární MeSH
- Názvy látek
- bakteriální toxiny * MeSH
- bakteriociny MeSH
- faktory virulence MeSH
High mobility group box 1 (HMGB1) is a DNA-binding nuclear protein that can be actively secreted by immune cells after different immune stimuli or passively released from cells undergoing necrosis. HMGB1 amplifies inflammation, and its hypersecretion contributes to multiple organ dysfunction syndrome and death. We tested possible immunomodulatory effect of commensal Lactobacillus amylovorus (LA), Lactobacillus mucosae (LM) or probiotic Escherichia coli Nissle 1917 (EcN) in infection of gnotobiotic piglets with Salmonella Typhimurium (ST). Transcription of HMGB1 and Toll-like receptors (TLR) 2, 4, and 9 and receptor for advanced glycation end products (RAGE), TLR4-related molecules (MD-2, CD14, and LBP), and adaptor proteins (MyD88 and TRIF) in the ileum and colon were measured by RT-qPCR. Expression of TLR4 and its related molecules were highly upregulated in the ST-infected intestine, which was suppressed by EcN, but not LA nor LM. In contrast, HMGB1 expression was unaffected by ST infection or commensal/probiotic administration. HMGB1 protein levels in the intestine measured by ELISA were increased in ST-infected piglets, but they were decreased by previous colonization with E. coli Nissle 1917 only. We conclude that the stability of HMGB1 mRNA expression in all piglet groups could show its importance for DNA transcription and physiological cell functions. The presence of HMGB1 protein in the intestinal lumen probably indicates cellular damage.
- Klíčová slova
- Escherichia coli Nissle 1917 (EcN), Lactobacillus amylovorus (LA), Lactobacillus mucosae (LM), Salmonella Typhimurium (ST), Toll-like receptor 4 (TLR4), gnotobiotic piglet, high mobility group box 1 (HMGB1), intestine,
- MeSH
- Escherichia coli imunologie MeSH
- gnotobiologické modely imunologie MeSH
- Lactobacillus acidophilus imunologie MeSH
- prasata * imunologie mikrobiologie MeSH
- probiotika * MeSH
- protein HMGB1 imunologie MeSH
- Salmonella typhimurium imunologie MeSH
- signální transdukce imunologie MeSH
- střeva imunologie mikrobiologie MeSH
- toll-like receptor 4 imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- protein HMGB1 MeSH
- toll-like receptor 4 MeSH
Non-typhoid Salmonellae are worldwide spread food-borne pathogens that cause diarrhea in humans and animals. Their multi-drug resistances require alternative ways to combat this enteric pathogen. Mono-colonization of a gnotobiotic piglet gastrointestinal tract with commensal lactobacilli Lactobacillus amylovorus and Lactobacillus mucosae and with probiotic E. coli Nissle 1917 and their interference with S. Typhimurium infection was compared. The impact of bacteria and possible protection against infection with Salmonella were evaluated by clinical signs, bacterial translocation, intestinal histology, mRNA expression of villin, claudin-1, claudin-2, and occludin in the ileum and colon, and local intestinal and systemic levels of inflammatory cytokines IL-8, TNF-α, and IL-10. Both lactobacilli colonized the gastrointestinal tract in approximately 100× lower density compare to E. coli Nissle and S. Typhimurium. Neither L. amylovorus nor L. mucosae suppressed the inflammatory reaction caused by the 24 h infection with S. Typhimurium. In contrast, probiotic E. coli Nissle 1917 was able to suppress clinical signs, histopathological changes, the transcriptions of the proteins, and the inductions of the inflammatory cytokines. Future studies are needed to determine whether prebiotic support of the growth of lactobacilli and multistrain lactobacilli inoculum could show higher protective effects.
- Klíčová slova
- E. coli Nissle 1917, Lactobacillus amylovorus, Lactobacillus mucosae, Salmonella Typhimurium, cytokine, food-borne pathogen, gnotobiotic piglet, intestine,
- Publikační typ
- časopisecké články MeSH
The strain Escherichia coli Nissle 1917 (EcN) is widely used as an efficient probiotic in therapy and prevention of human infectious diseases, especially of the intestinal system. Concurrently, small adult pigs are being used as experimental omnivore models to study human gastrointestinal functions. EcN bacteria were applied to 6 adult healthy female pigs in a 2-week trial. 6 Control animals remained untreated. Altogether, 164 and 149 bacterial strains were isolated from smear samples taken from gastrointestinal mucosa in the experimental and control group, respectively. Each individual E. coli strain was then tested for the presence of 29 bacteriocin-encoding determinants as well as for DNA markers of A, B1, B2 and D phylogenetic groups. A profound reduction of E. coli genetic variance (from 32 variants to 13 ones, P = 0.0006) was found in the experimental group, accompanied by a lower incidence of bacteriocin producers in the experimental group when compared to control (21.3 and 34.9%, respectively; P = 0.007) and by changes in the incidence of individual bacteriocin types. The experimental administration of EcN strain was not sufficient for stable colonization of porcine gut, but induced significant changes in the enterobacterial microbiota.
- MeSH
- bakteriální geny MeSH
- bakteriociny genetika MeSH
- Escherichia coli klasifikace izolace a purifikace MeSH
- fylogeneze MeSH
- genetická variace MeSH
- molekulární typizace MeSH
- prasata MeSH
- probiotika aplikace a dávkování MeSH
- společenstvo * MeSH
- střevní sliznice mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriociny MeSH
AIM: To evaluate bacteriocinogeny in short-term high-dose indomethacin administration with or without probiotic Escherichia coli Nissle 1917 (EcN) in experimental pigs. METHODS: Twenty-four pigs entered the study: Group A (controls), Group B (probiotics alone), Group C (indomethacin alone) and Group D (probiotics and indomethacin). EcN (3.5×10(10) bacteria/d for 14 d) and/or indomethacin (15 mg/kg per day for 10 d) were administrated orally. Anal smears before and smears from the small and large intestine were taken from all animals. Bacteriocin production was determined with 6 different indicator strains; all strains were polymerase chain reaction tested for the presence of 29 individual bacteriocin-encoding determinants. RESULTS: The general microbiota profile was rather uniform in all animals but there was a broad diversity in coliform bacteria (parallel genotypes A, B1, B2 and D found). In total, 637 bacterial strains were tested, mostly Escherichia coli (E. coli). There was a higher incidence of non-E. coli strains among samples taken from the jejunum and ileum compared to that of the colon and rectum indicating predominance of E. coli strains in the large intestine. Bacteriocinogeny was found in 24/77 (31%) before and in 155/560 (28%) isolated bacteria at the end of the study. Altogether, 13 individual bacteriocin types (out of 29 tested) were identified among investigated strains. Incidence of four E. coli genotypes was equally distributed in all groups of E. coli strains, with majority of genotype A (ranging from 81% to 88%). The following types of bacteriocins were most commonly revealed: colicins Ia/Ib (44%), microcin V (18%), colicin E1 (16%) and microcin H47 (6%). There was a difference in bacteriocinogeny between control group A (52/149, 35%) and groups with treatment at the end of the study: B: 31/122 (25%, P=0.120); C: 43/155 (28%, P=0.222); D: 29/134 (22%, P=0.020). There was a significantly lower prevalence of colicin Ib, microcins H47 and V (probiotics group, P<0.001), colicin E1 and microcin H47 (indomethacin group, P<0.001) and microcins H47 and V (probiotics and indomethacin group, P=0.025) compared to controls. Escherichia fergusonii (E. fergusonii) was identified in 6 animals (6/11 isolates from the rectum). One strain was non-colicinogenic, while all other strains of E. fergusonii solely produced colicin E1. All animals started and remained methanogenic despite the fact that EcN is a substantial hydrogen producer. There was an increase in breath methane (after the treatment) in 5/6 pigs from the indomethacin group (C). CONCLUSION: EcN did not exert long-term liveability in the porcine intestine. All experimental pigs remained methanogenic. Indomethacin and EcN administered together might produce the worst impact on bacteriocinogeny.
- Klíčová slova
- Bacteriocinogeny, Escherichia coli Nissle 1917, Experimental pigs, Indomethacin,
- MeSH
- antiflogistika nesteroidní škodlivé účinky farmakologie MeSH
- bakteriociny metabolismus MeSH
- dechové testy MeSH
- Escherichia coli metabolismus MeSH
- indomethacin škodlivé účinky farmakologie MeSH
- lidé MeSH
- metagenom MeSH
- methan metabolismus MeSH
- probiotika farmakologie MeSH
- střevní sliznice účinky léků mikrobiologie MeSH
- Sus scrofa MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antiflogistika nesteroidní MeSH
- bakteriociny MeSH
- indomethacin MeSH
- methan MeSH
The colonization, translocation and protective effect of two intestinal bacteria - PR4 (pig commensal strain of Bifidobacterium choerinum) or EcN (probiotic Escherichia coli strain Nissle 1917) - against subsequent infection with a virulent LT2 strain of Salmonella enterica serovar Typhimurium were studied in gnotobiotic pigs after oral association. The clinical state of experimental animals correlated with bacterial translocation and levels of inflammatory cytokines [a chemokine, interleukin (IL)-8, a proinflammatory cytokine, tumour necrosis factor (TNF)-α and an anti-inflammatory cytokine, IL-10] in plasma and intestinal lavages. Gnotobiotic pigs orally mono-associated with either PR4 or EcN thrived, and bacteria were not found in their blood. No significant inflammatory cytokine response was observed. Mono-association with Salmonella caused devastating septicaemia characterized by high levels of IL-10 and TNF-α in plasma and TNF-α in the intestine. Di-associated gnotobiotic pigs were given PR4 or EcN for 24 h. Subsequently, they were infected orally with Salmonella and euthanized 24 h later. Pigs associated with bifidobacteria before Salmonella infection suffered from severe systemic infection and mounted similar cytokine responses as pigs infected with Salmonella alone. In contrast, EcN interfered with translocation of Salmonella into mesenteric lymph nodes and systemic circulation. Pigs pre-associated with EcN thrived and their clinical condition correlated with the absence of IL-10 in their plasma and a decrease of TNF-α in plasma and ileum.
- MeSH
- antibióza * MeSH
- Bifidobacterium imunologie MeSH
- cytokiny analýza krev MeSH
- Escherichia coli imunologie MeSH
- gnotobiologické modely MeSH
- ileum imunologie mikrobiologie MeSH
- kolon imunologie mikrobiologie MeSH
- prasata MeSH
- probiotika terapeutické užití MeSH
- Salmonella typhimurium imunologie MeSH
- salmonelová infekce u zvířat imunologie terapie MeSH
- střeva imunologie mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokiny MeSH