Nejvíce citovaný článek - PubMed ID 16626397
The accumulation of senescent cells drives inflammaging and increases morbidity of chronic inflammatory lung diseases. Immune responses are built upon dynamic changes in cell metabolism that supply energy and substrates for cell proliferation, differentiation, and activation. Metabolic changes imposed by environmental stress and inflammation on immune cells and tissue microenvironment are thus chiefly involved in the pathophysiology of allergic and other immune-driven diseases. Altered cell metabolism is also a hallmark of cell senescence, a condition characterized by loss of proliferative activity in cells that remain metabolically active. Accelerated senescence can be triggered by acute or chronic stress and inflammatory responses. In contrast, replicative senescence occurs as part of the physiological aging process and has protective roles in cancer surveillance and wound healing. Importantly, cell senescence can also change or hamper response to diverse therapeutic treatments. Understanding the metabolic pathways of senescence in immune and structural cells is therefore critical to detect, prevent, or revert detrimental aspects of senescence-related immunopathology, by developing specific diagnostics and targeted therapies. In this paper, we review the main changes and metabolic alterations occurring in senescent immune cells (macrophages, B cells, T cells). Subsequently, we present the metabolic footprints described in translational studies in patients with chronic asthma and chronic obstructive pulmonary disease (COPD), and review the ongoing preclinical studies and clinical trials of therapeutic approaches aiming at targeting metabolic pathways to antagonize pathological senescence. Because this is a recently emerging field in allergy and clinical immunology, a better understanding of the metabolic profile of the complex landscape of cell senescence is needed. The progress achieved so far is already providing opportunities for new therapies, as well as for strategies aimed at disease prevention and supporting healthy aging.
- Klíčová slova
- cell metabolism, immune senescence, immunometabolism, inflammaging, senolytic drugs, senomorphic drugs,
- MeSH
- chronická nemoc MeSH
- chronická obstrukční plicní nemoc metabolismus farmakoterapie imunologie MeSH
- lidé MeSH
- metabolické sítě a dráhy * MeSH
- plicní nemoci etiologie farmakoterapie metabolismus imunologie MeSH
- stárnutí buněk * účinky léků MeSH
- stárnutí imunologie metabolismus MeSH
- zánět metabolismus imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Staining mice tissues for β-galactosidase activity is a fundamental tool to detect age- or disease-associated cellular senescence. However, reported analyses of positivity for senescence-associated β-galactosidase activity or for other markers of senescence in post-mitotic cells of healthy murine tissues have been fragmentary or inconclusive. Here, we attempted to independently deepen this knowledge using multiple senescence markers within the same cells of wild type mice entering middle age (9 months of age). A histochemistry protocol for the pH-dependent detection of β-galactosidase activity in several tissues was used. At pH 6, routinely utilized to detect senescence-associated β-galactosidase activity, only specific cellular populations in the mouse body (including Purkinje cells and choroid plexus in the central nervous system) were detected as strongly positive for β-galactosidase activity. These post-mitotic cells were also positive for other established markers of senescence (p16, p21 and DPP4), detected by immunofluorescence, confirming a potential senescent phenotype. These data might contribute to understanding the functional relation between the senescence-associated β-galactosidase activity and senescence markers in post-mitotic cells in absence of disease or advanced aging.
- Klíčová slova
- markers, mice, senescence,
- MeSH
- beta-galaktosidasa metabolismus MeSH
- biologické markery metabolismus MeSH
- imunohistochemie MeSH
- koncentrace vodíkových iontů MeSH
- mitóza fyziologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- stárnutí buněk fyziologie MeSH
- stárnutí fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- beta-galaktosidasa MeSH
- biologické markery MeSH