Nejvíce citovaný článek - PubMed ID 15152190
The accumulation of senescent cells drives inflammaging and increases morbidity of chronic inflammatory lung diseases. Immune responses are built upon dynamic changes in cell metabolism that supply energy and substrates for cell proliferation, differentiation, and activation. Metabolic changes imposed by environmental stress and inflammation on immune cells and tissue microenvironment are thus chiefly involved in the pathophysiology of allergic and other immune-driven diseases. Altered cell metabolism is also a hallmark of cell senescence, a condition characterized by loss of proliferative activity in cells that remain metabolically active. Accelerated senescence can be triggered by acute or chronic stress and inflammatory responses. In contrast, replicative senescence occurs as part of the physiological aging process and has protective roles in cancer surveillance and wound healing. Importantly, cell senescence can also change or hamper response to diverse therapeutic treatments. Understanding the metabolic pathways of senescence in immune and structural cells is therefore critical to detect, prevent, or revert detrimental aspects of senescence-related immunopathology, by developing specific diagnostics and targeted therapies. In this paper, we review the main changes and metabolic alterations occurring in senescent immune cells (macrophages, B cells, T cells). Subsequently, we present the metabolic footprints described in translational studies in patients with chronic asthma and chronic obstructive pulmonary disease (COPD), and review the ongoing preclinical studies and clinical trials of therapeutic approaches aiming at targeting metabolic pathways to antagonize pathological senescence. Because this is a recently emerging field in allergy and clinical immunology, a better understanding of the metabolic profile of the complex landscape of cell senescence is needed. The progress achieved so far is already providing opportunities for new therapies, as well as for strategies aimed at disease prevention and supporting healthy aging.
- Klíčová slova
- cell metabolism, immune senescence, immunometabolism, inflammaging, senolytic drugs, senomorphic drugs,
- MeSH
- chronická nemoc MeSH
- chronická obstrukční plicní nemoc metabolismus farmakoterapie imunologie MeSH
- lidé MeSH
- metabolické sítě a dráhy * MeSH
- plicní nemoci etiologie farmakoterapie metabolismus imunologie MeSH
- stárnutí buněk * účinky léků MeSH
- stárnutí imunologie metabolismus MeSH
- zánět metabolismus imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The study aimed to investigate the influence of obesity on cellular features of equine endometrial progenitor cells (Eca EPCs), including viability, proliferation capacity, mitochondrial metabolism, and oxidative homeostasis. Eca EPCs derived from non-obese (non-OB) and obese (OB) mares were characterized by cellular phenotype and multipotency. Obesity-induced changes in the activity of Eca EPCs include the decline of their proliferative activity, clonogenic potential, mitochondrial metabolism, and enhanced oxidative stress. Eca EPCs isolated from obese mares were characterized by an increased occurrence of early apoptosis, loss of mitochondrial dynamics, and senescence-associated phenotype. Attenuated metabolism of Eca EPCs OB was related to increased expression of pro-apoptotic markers (CASP9, BAX, P53, P21), enhanced expression of OPN, PI3K, and AKT, simultaneously with decreased signaling stabilizing cellular homeostasis (including mitofusin, SIRT1, FOXP3). Obesity alters functional features and the self-renewal potential of endometrial progenitor cells. The impaired cytophysiology of progenitor cells from obese endometrium predicts lower regenerative capacity if used as autologous transplants.
- Klíčová slova
- cellular metabolism, endometrial progenitor cells, obesity, self-renewal potential,
- MeSH
- endometrium metabolismus MeSH
- endoteliální progenitorové buňky * metabolismus MeSH
- fenotyp MeSH
- kmenové buňky metabolismus MeSH
- koně MeSH
- obezita metabolismus MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cardiometabolic disorders are among the leading causes of mortality in the human population. Dietary polyphenols exert beneficial effects on cardiometabolic health in humans. Molecular mechanisms, however, are not completely understood. Aiming to conduct in-depth integrative bioinformatic analyses to elucidate molecular mechanisms underlying the protective effects of polyphenols on cardiometabolic health, we first conducted a systematic literature search to identify human intervention studies with polyphenols that demonstrate improvement of cardiometabolic risk factors in parallel with significant nutrigenomic effects. Applying the predefined inclusion criteria, we identified 58 differentially expressed genes at mRNA level and 5 miRNAs, analyzed in peripheral blood cells with RT-PCR methods. Subsequent integrative bioinformatic analyses demonstrated that polyphenols modulate genes that are mainly involved in the processes such as inflammation, lipid metabolism, and endothelial function. We also identified 37 transcription factors that are involved in the regulation of polyphenol modulated genes, including RELA/NFKB1, STAT1, JUN, or SIRT1. Integrative bioinformatic analysis of mRNA and miRNA-target pathways demonstrated several common enriched pathways that include MAPK signaling pathway, TNF signaling pathway, PI3K-Akt signaling pathway, focal adhesion, or PPAR signaling pathway. These bioinformatic analyses represent a valuable source of information for the identification of molecular mechanisms underlying the beneficial health effects of polyphenols and potential target genes for future nutrigenetic studies.
- Klíčová slova
- cardiometabolic health, human, integrative bioinformatics, nutrigenomics, polyphenols, systematic literature search,
- MeSH
- dospělí MeSH
- fyziologie výživy genetika MeSH
- kardiometabolické riziko MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- lidé středního věku MeSH
- lidé MeSH
- messenger RNA krev MeSH
- metabolický syndrom genetika prevence a kontrola MeSH
- mikro RNA krev MeSH
- nutrigenomika MeSH
- ochranné látky farmakologie MeSH
- polyfenoly farmakologie MeSH
- signální transdukce genetika MeSH
- výpočetní biologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- systematický přehled MeSH
- Názvy látek
- messenger RNA MeSH
- mikro RNA MeSH
- ochranné látky MeSH
- polyfenoly MeSH
This article is directed at highlighting the involvement of the endogenous stress sensor SIRT1 (silent information regulator T1) as a possible factor involved in hepatoprotection. The selective SIRT1 modulators whether activators (STACs) or inhibitors are being tried experimentally and clinically. We discuss the modulation of SIRT1 on cytoprotection or even cytotoxicity in the liver chemically injured by hepatotoxic agents in rats, to shed light on the crosstalk between SIRT1 and its modulators. A combination of D-galactosamine and lipopolysaccharide (D-GalN/LPS) downregulated SIRT1 expression, while SIRT1 activators, SRT1720, resveratrol, and quercetin, upregulated SIRT1 and alleviated D-GalN/LPS-induced acute hepatotoxicity. Liver injury markers exhibited an inverse relationship with SIRT1 expression. However, under subchronic hepatotoxicity, quercetin decreased the significant increase in SIRT1 expression to lower levels which are still higher than normal ones and mitigated the liver-damaging effects of carbon tetrachloride. Each of these STACs was hepatoprotective and returned the conventional antioxidant enzymes to the baseline. Polyphenols tend to fine-tune SIRT1 expression towards normal in the liver of intoxicated rats in both acute and subchronic studies. Together, all these events give an impression that the cytoprotective effects of SIRT1 are exhibited within a definite range of expression. The catalytic activity of SIRT1 is important in the hepatoprotective effects of polyphenols where SIRT1 inhibitors block and the allosteric SIRT1 activators mimic the hepatoprotective effects of polyphenols. Our findings indicate that the pharmacologic modulation of SIRT1 could represent both an important move in alleviating hepatic insults and a future major step in the treatment of xenobiotic-induced hepatotoxicity.
- MeSH
- lékové postižení jater farmakoterapie enzymologie MeSH
- lidé MeSH
- polyfenoly farmakologie MeSH
- sirtuin 1 antagonisté a inhibitory metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- polyfenoly MeSH
- sirtuin 1 MeSH