Nejvíce citovaný článek - PubMed ID 16721658
Change of the protein p53 electrochemical signal according to its structural form - quick and sensitive distinguishing of native, denatured, and aggregated form of the "guardian of the genome"
Chloride ion sensing is important in many fields such as clinical diagnosis, environmental monitoring and industrial applications. We have measured chloride ions at a carbon paste electrode (CPE) and at a CPE modified with solid AgNO₃, a solution of AgNO₃ and/or solid silver particles. Detection limits (3 S/N) for chloride ions were 100 μM, 100 μM and 10 μM for solid AgNO₃, solution of AgNO₃ and/or solid silver particles, respectively. The CPE modified with silver particles is the most sensitive to the presence chloride ions. After that we approached to the miniaturization of the whole electrochemical instrument. Measurements were carried out on miniaturized instrument consisting of a potentiostat with dimensions 35 × 166 × 125 mm, screen printed electrodes, a peristaltic pump and a PC with control software. Under the most suitable experimental conditions (Britton-Robinson buffer, pH 1.8 and working electrode potential 550 mV) we estimated the limit of detection (3 S/N) as 500 nM.
- Klíčová slova
- Amperometry, Carbon Paste Electrode, Chloride Ions, Screen Printed Electrode, Silver, Voltammetry,
- Publikační typ
- časopisecké články MeSH
In the paper we utilized the adsorptive transfer stripping differential pulse voltammetry Brdicka reaction for the determination of metallothioneins (MT) in melanoma cells, animal melanoma tissues (MeLiM miniature pig) and blood serum of patients with malignant melanoma. Primarily we attempted to investigate the influence of dilution of real sample on MT electrochemical response. Dilution of samples of 1 000 times was chosen the most suitable for determination of MT level in biological samples. Then we quantified the MT level in the melanoma cells, the animal melanoma tissues and the blood serum samples. The MT content in the cells varied within the range from 4.2 to 11.2 μM. At animal melanoma tissues (melanomas localized on abdomen, back limb and dorsum) the highest content of MT was determined in the tumour sampled on the back of the animal and was nearly 500 μg of MTs per gram of a tissue. We also quantified content of MT in metastases, which was found in liver, spleen and lymph nodes. Moreover the average MT level in the blood serum samples from patients with melanoma was 3.0 ± 0.8 μM. MT levels determined at melanoma samples were significantly (p < 0.05) higher compared to control ones at cells, tissues and blood serum.
- Klíčová slova
- Adsorptive Transfer Stripping Technique, Animal Tissue, Brdicka Reaction, Cell, Differential Pulse Voltammetry, Human blood serum, Metallothionein, Protein, Tumour Marker,
- Publikační typ
- časopisecké články MeSH
An Electrochemical Detection of Metallothioneins at the Zeptomole Level in Nanolitre VolumesWe report on improvement of the adsorptive transfer stripping technique (AdTS) coupled with the differential pulse voltammetry Brdicka reaction to determine a thiol-protein. The current technique has been unable to generate reproducible results when analyzing very low sample volumes (nanolitres). This obstacle can be overcome technically by modifying the current transfer technique including cooling step of the adsorbed analyte. We tested the technique on determination of a promising tumour disease marker protein called metallothionein (MT). The detection limit (3 S/N) of MT was evaluated as 500 zeptomoles per 500 nL (1 pM) and the quantification limit (10 S/N) as 1,500 zeptomoles per 500 nL (3 pM). Further, the improved AdTS technique was utilized to analyze blood serum samples from patients with breast cancer. Based on the results obtained it can be concluded that the improved technique can be used to detect a thiolprotein in very low sample volumes and can also prevent interferences during the washing and transferring step.
- Klíčová slova
- Brdicka reaction, Proteomics, adsorptive transfer stripping technique, differential pulse voltammetry, human blood serum, metallothionein, thiols, tumour disease, zeptomole,
- Publikační typ
- časopisecké články MeSH
Lactoferrin is a multifunctional protein with antimicrobial activity and others tohealth beneficial properties. The main aim of this work was to propose easy to usetechnique for lactoferrin isolation from cow colostrum samples. Primarily we utilizedsodium dodecyl sulphate - polyacrylamide gel electrophoresis for isolation of lactoferrinfrom the real samples. Moreover we tested automated microfluidic Experionelectrophoresis system to isolate lactoferrin from the collostrum sample. The welldeveloped signal of lactoferrin was determined with detection limit (3 S/N) of 20 ng/ml. Inspite of the fact that Experion is faster than SDS-PAGE both separation techniques cannotbe used in routine analysis. Therefore we have tested third separation technique, ionexchange chromatography, using monolithic column coupled with UV-VIS detector (LCUV-VIS). We optimized wave length (280 nm), ionic strength of the elution solution (1.5M NaCl) and flow rate of the retention and elution solutions (0.25 ml/min and 0.75 ml/min.respectively). Under the optimal conditions the detection limit was estimated as 0.1 μg/mlof lactoferrin measured. Using LC-UV-VIS we determined that lactoferrin concentrationvaried from 0.5 g/l to 1.1 g/l in cow colostrums collected in the certain time interval up to 72 hours after birth. Further we focused on miniaturization of detection device. We testedamperometric detection at carbon electrode. The results encouraged us to attempt tominiaturise whole detection system and to test it on analysis of real samples of humanfaeces, because lactoferrin level in faeces is closely associated with the inflammations ofintestine mucous membrane. For the purpose of miniaturization we employed thetechnology of printed electrodes. The detection limit of lactoferrin was estimated as 10μg/ml measured by the screen-printed electrodes fabricated by us. The fabricatedelectrodes were compared with commercially available ones. It follows from the obtainedresults that the responses measured by commercial electrodes are app. ten times highercompared with those measured by the electrodes fabricated by us. This phenomenonrelates with smaller working electrode surface area of the electrodes fabricated by us(about 50 %) compared to the commercial ones. The screen-printed electrodes fabricatedby us were utilized for determination of lactoferrin faeces. Regarding to fact that sample offaeces was obtained from young and healthy man the amount of lactoferrin in sample wasunder the limit of detection of this method.