Most cited article - PubMed ID 16787342
Quinaldine derivatives: preparation and biological activity
Eight 1-[(2-chlorophenyl)carbamoyl]naphthalen-2-yl alkylcarbamates and eight 1-[(2-nitrophenyl)carbamoyl]naphthalen-2-yl alkylcarbamates were tested for their activity related to the inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. The PET-inhibiting activity of the compounds was relatively low; the corresponding IC50 values ranged from 0.05 to 0.664 mmol/L; and the highest activity within the series of compounds was observed for 1-[(2-chlorophenyl)-carbamoyl]naphthalen-2-yl propylcarbamate. It has been proven that the compounds are PET-inhibitors in photosystem II. Despite rather low PET-inhibiting activities, primary structure-activity trends can be discussed.
- Keywords
- PET inhibition, alkylcarbamates, hydroxynaphthalene-carboxamides, spinach chloroplasts, structure-activity relationships,
- MeSH
- Chloroplasts drug effects metabolism MeSH
- Photosynthesis drug effects MeSH
- Inhibitory Concentration 50 MeSH
- Carbamates chemistry pharmacology MeSH
- Spinacia oleracea metabolism MeSH
- Electron Transport drug effects MeSH
- Structure-Activity Relationship MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Carbamates MeSH
In this study, a series of twenty-two ring-substituted naphthalene-1-carboxanilides were prepared and characterized. Primary in vitro screening of the synthesized carboxanilides was performed against Mycobacterium avium subsp. paratuberculosis. N-(2-Methoxyphenyl)naphthalene-1-carboxamide, N-(3-methoxy-phenyl)naphthalene-1-carboxamide, N-(3-methylphenyl)naphthalene-1-carboxamide, N-(4-methylphenyl)naphthalene-1-carboxamide and N-(3-fluorophenyl)naphthalene-1-carboxamide showed against M. avium subsp. paratuberculosis two-fold higher activity than rifampicin and three-fold higher activity than ciprofloxacin. The most effective antimycobacterial compounds demonstrated insignificant toxicity against the human monocytic leukemia THP-1 cell line. The testing of biological activity of the compounds was completed with the study of photosynthetic electron transport (PET) inhibition in isolated spinach (Spinacia oleracea L.) chloroplasts. The PET-inhibiting activity expressed by IC50 value of the most active compound N-[4-(trifluoromethyl)phenyl]naphthalene-1-carboxamide was 59 μmol/L. The structure-activity relationships are discussed.
- MeSH
- Anilides chemical synthesis chemistry pharmacology MeSH
- Anti-Bacterial Agents chemistry pharmacology MeSH
- Chloroplasts drug effects metabolism MeSH
- Photosynthesis drug effects MeSH
- Hydrophobic and Hydrophilic Interactions MeSH
- Microbial Sensitivity Tests MeSH
- Mycobacterium avium drug effects MeSH
- Naphthalenes chemistry MeSH
- Spinacia oleracea drug effects metabolism MeSH
- Electron Transport drug effects MeSH
- Structure-Activity Relationship MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anilides MeSH
- Anti-Bacterial Agents MeSH
- Naphthalenes MeSH
In this study, a series of thirty-five substituted quinoline-2-carboxamides and thirty-three substituted naphthalene-2-carboxamides were prepared and characterized. They were tested for their activity related to the inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Primary in vitro screening of the synthesized compounds was also performed against four mycobacterial species. N-Cycloheptylquinoline-2-carboxamide, N-cyclohexylquinoline-2-carboxamide and N-(2-phenylethyl)quinoline-2-carboxamide showed higher activity against M. tuberculosis than the standards isoniazid or pyrazinamide and 2-(pyrrolidin-1-ylcarbonyl)quinoline and 1-(2-naphthoyl)pyrrolidine expressed higher activity against M. kansasii and M. avium paratuberculosis than the standards isoniazid or pyrazinamide. The most effective antimycobacterial compounds demonstrated insignificant toxicity against the human monocytic leukemia THP-1 cell line. The PET-inhibiting activity expressed by IC(50) value of the most active compound N-benzyl-2-naphthamide was 7.5 μmol/L. For all compounds, the structure-activity relationships are discussed.
- MeSH
- Anti-Bacterial Agents chemical synthesis pharmacology MeSH
- Quinolines chemical synthesis pharmacology MeSH
- Chloroplasts drug effects MeSH
- Photosynthesis drug effects MeSH
- Herbicides chemical synthesis pharmacology MeSH
- Hydrophobic and Hydrophilic Interactions MeSH
- Inhibitory Concentration 50 MeSH
- Lethal Dose 50 MeSH
- Humans MeSH
- Microbial Sensitivity Tests MeSH
- Mycobacterium drug effects MeSH
- Cell Line, Tumor MeSH
- Naphthalenes chemical synthesis pharmacology MeSH
- Spinacia oleracea drug effects MeSH
- Electron Transport drug effects MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Quinolines MeSH
- Herbicides MeSH
- Naphthalenes MeSH
In this study, a series of twelve ring-substituted salicylanilides and carbamoylphenylcarbamates were prepared and characterized. The compounds were analyzed using RP-HPLC to determine lipophilicity. They were tested for their activity related to the inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Moreover, their site of action in the photosynthetic apparatus was determined. Primary in vitro screening of the synthesized compounds was also performed against mycobacterial, bacterial and fungal strains. Several compounds showed biological activity comparable with or higher than the standards 3-(3,4-dichlorophenyl)-1,1-dimethylurea, isoniazid, penicillin G, ciprofloxacin or fluconazole. The most active compounds showed minimal anti-proliferative activity against human cells in culture, indicating they would have low cytotoxicity. For all compounds, the relationships between lipophilicity and the chemical structure are discussed.
- MeSH
- Absidia drug effects MeSH
- Anti-Bacterial Agents chemical synthesis chemistry pharmacology MeSH
- Antifungal Agents chemical synthesis chemistry pharmacology MeSH
- Chloroplasts drug effects metabolism MeSH
- Phenylcarbamates chemical synthesis chemistry pharmacology MeSH
- Photosynthesis drug effects MeSH
- Herbicides chemical synthesis chemistry pharmacology MeSH
- Humans MeSH
- Microbial Sensitivity Tests MeSH
- Cell Line, Tumor MeSH
- Cell Proliferation drug effects MeSH
- Salicylanilides chemical synthesis chemistry pharmacology MeSH
- Spinacia oleracea drug effects metabolism MeSH
- Staphylococcus aureus drug effects MeSH
- Staphylococcus epidermidis drug effects MeSH
- Electron Transport drug effects MeSH
- Trichophyton drug effects MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Antifungal Agents MeSH
- Phenylcarbamates MeSH
- Herbicides MeSH
- Salicylanilides MeSH
In this study, series of ring-substituted 2-styrylquinazolin-4(3H)-one and 4-chloro-2-styrylquinazoline derivatives were prepared. The syntheses of the discussed compounds are presented. The compounds were analyzed by RP-HPLC to determine lipophilicity. They were tested for their inhibitory activity on photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Primary in vitro screening of the synthesized compounds was also performed against four mycobacterial strains and against eight fungal strains. Several compounds showed biological activity comparable with or higher than that of the standard isoniazid. It was found that the electronic properties of the R substituent, and not the total lipophilicity of the compound, were decisive for the photosynthesis-inhibiting activity of tested compounds.
- MeSH
- Antitubercular Agents chemical synthesis chemistry pharmacology MeSH
- Mycobacterium Infections, Nontuberculous drug therapy MeSH
- Pneumonia, Bacterial drug therapy microbiology MeSH
- Quinazolines chemical synthesis chemistry pharmacology MeSH
- Chloroplasts drug effects MeSH
- Photosynthesis drug effects MeSH
- Humans MeSH
- Nontuberculous Mycobacteria drug effects MeSH
- Spinacia oleracea drug effects MeSH
- Styrenes chemical synthesis pharmacology MeSH
- Electron Transport drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 2-styrylquinazolin-4(3H)-one MeSH Browser
- 4-chloro-2-styrylquinazoline MeSH Browser
- Antitubercular Agents MeSH
- Quinazolines MeSH
- Styrenes MeSH
- styrylquinazoline MeSH Browser
In the study, a series of twelve ring-substituted 4-hydroxy-1H-quinolin-2-one derivatives were prepared. The procedures for synthesis of the compounds are presented. The compounds were analyzed using RP-HPLC to determine lipophilicity and tested for their photosynthesis-inhibiting activity using spinach (Spinacia oleracea L.) chloroplasts. All the synthesized compounds were also evaluated for antifungal activity using in vitro screening with eight fungal strains. For all the compounds, the relationships between the lipophilicity and the chemical structure of the studied compounds are discussed, as well as their structure-activity relationships (SAR).
- MeSH
- Antifungal Agents chemistry MeSH
- Quinolones chemical synthesis pharmacology MeSH
- Chloroplasts drug effects MeSH
- Photosynthesis drug effects MeSH
- Fungi drug effects MeSH
- Hydrophobic and Hydrophilic Interactions MeSH
- Hydroxyquinolines chemical synthesis pharmacology MeSH
- Structure-Activity Relationship MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antifungal Agents MeSH
- Quinolones MeSH
- Hydroxyquinolines MeSH