Most cited article - PubMed ID 17133369
The iron-regulated transcriptome and proteome of Neisseria meningitidis serogroup C
Bordetella pertussis is a Gram-negative strictly human pathogen of the respiratory tract and the etiological agent of whooping cough (pertussis). Previously, we have shown that RNA chaperone Hfq is required for virulence of B. pertussis. Furthermore, microarray analysis revealed that a large number of genes are affected by the lack of Hfq. This study represents the first attempt to characterize the Hfq regulon in bacterial pathogen using an integrative omics approach. Gene expression profiles were analyzed by RNA-seq and protein amounts in cell-associated and cell-free fractions were determined by LC-MS/MS technique. Comparative analysis of transcriptomic and proteomic data revealed solid correlation (r2 = 0.4) considering the role of Hfq in post-transcriptional control of gene expression. Importantly, our study confirms and further enlightens the role of Hfq in pathogenicity of B. pertussis as it shows that Δhfq strain displays strongly impaired secretion of substrates of Type III secretion system (T3SS) and substantially reduced resistance to serum killing. On the other hand, significantly increased production of proteins implicated in transport of important metabolites and essential nutrients observed in the mutant seems to compensate for the physiological defect introduced by the deletion of the hfq gene.
- Keywords
- Bordetella pertussis, Hfq, T3SS, omics analysis, serum resistance, solute-binding proteins,
- MeSH
- Bordetella pertussis genetics metabolism MeSH
- Chromatography, Liquid MeSH
- Gene Ontology MeSH
- Humans MeSH
- Host Factor 1 Protein genetics metabolism MeSH
- Proteome MeSH
- Proteomics * methods MeSH
- Gene Expression Regulation, Bacterial * MeSH
- Regulon * MeSH
- Type III Secretion Systems genetics metabolism MeSH
- Gene Expression Profiling * methods MeSH
- Tandem Mass Spectrometry MeSH
- Transcriptome MeSH
- Computational Biology methods MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Host Factor 1 Protein MeSH
- Proteome MeSH
- Type III Secretion Systems MeSH
The iron-regulated protein FrpD from Neisseria meningitidis is an outer membrane lipoprotein that interacts with very high affinity (Kd ~ 0.2 nM) with the N-terminal domain of FrpC, a Type I-secreted protein from the Repeat in ToXin (RTX) protein family. In the presence of Ca2+, FrpC undergoes Ca2+ -dependent protein trans-splicing that includes an autocatalytic cleavage of the Asp414-Pro415 peptide bond and formation of an Asp414-Lys isopeptide bond. Here, we report the high-resolution structure of FrpD and describe the structure-function relationships underlying the interaction between FrpD and FrpC1-414. We identified FrpD residues involved in FrpC1-414 binding, which enabled localization of FrpD within the low-resolution SAXS model of the FrpD-FrpC1-414 complex. Moreover, the trans-splicing activity of FrpC resulted in covalent linkage of the FrpC1-414 fragment to plasma membrane proteins of epithelial cells in vitro, suggesting that formation of the FrpD-FrpC1-414 complex may be involved in the interaction of meningococci with the host cell surface.
- MeSH
- Bacterial Proteins chemistry genetics MeSH
- Cell Adhesion genetics MeSH
- X-Ray Diffraction MeSH
- Humans MeSH
- Lipoproteins chemistry metabolism MeSH
- Membrane Proteins chemistry genetics MeSH
- Neisseria meningitidis chemistry genetics MeSH
- Periplasmic Binding Proteins chemistry metabolism MeSH
- Iron-Binding Proteins chemistry metabolism MeSH
- Bacterial Outer Membrane Proteins metabolism MeSH
- Amino Acid Sequence genetics MeSH
- Iron chemistry metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacterial Proteins MeSH
- frpC protein, Neisseria meningitidis MeSH Browser
- Lipoproteins MeSH
- Membrane Proteins MeSH
- Periplasmic Binding Proteins MeSH
- Iron-Binding Proteins MeSH
- Bacterial Outer Membrane Proteins MeSH
- Iron MeSH
BACKGROUND: Bacterial spore germination is a developmental process during which all required metabolic pathways are restored to transfer cells from their dormant state into vegetative growth. Streptomyces are soil dwelling filamentous bacteria with complex life cycle, studied mostly for they ability to synthesize secondary metabolites including antibiotics. RESULTS: Here, we present a systematic approach that analyzes gene expression data obtained from 13 time points taken over 5.5 h of Streptomyces germination. Genes whose expression was significantly enhanced/diminished during the time-course were identified, and classified to metabolic and regulatory pathways. The classification into metabolic pathways revealed timing of the activation of specific pathways during the course of germination. The analysis also identified remarkable changes in the expression of specific sigma factors over the course of germination. Based on our knowledge of the targets of these factors, we speculate on their possible roles during germination. Among the factors whose expression was enhanced during the initial part of germination, SigE is though to manage cell wall reconstruction, SigR controls protein re-aggregation, and others (SigH, SigB, SigI, SigJ) control osmotic and oxidative stress responses. CONCLUSIONS: From the results, we conclude that most of the metabolic pathway mRNAs required for the initial phases of germination were synthesized during the sporulation process and stably conserved in the spore. After rehydration in growth medium, the stored mRNAs are being degraded and resynthesized during first hour. From the analysis of sigma factors we conclude that conditions favoring germination evoke stress-like cell responses.
- MeSH
- Bacterial Proteins genetics metabolism MeSH
- Time Factors MeSH
- Heat-Shock Response genetics MeSH
- Gene Expression Profiling * MeSH
- Streptomyces coelicolor genetics growth & development metabolism physiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacterial Proteins MeSH
This review summarizes the main results obtained in the fields of general and molecular microbiology and microbial genetics at the Institute of Microbiology of the Academy of Sciences of the Czech Republic (AS CR) [formerly Czechoslovak Academy of Sciences (CAS)] over more than 50 years. Contribution of the founder of the Institute, academician Ivan Málek, to the introduction of these topics into the scientific program of the Institute of Microbiology and to further development of these studies is also included.
- MeSH
- Academies and Institutes history MeSH
- History, 20th Century MeSH
- Genetics, Microbial history MeSH
- Molecular Biology history MeSH
- Check Tag
- History, 20th Century MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Geographicals
- Czech Republic MeSH