Nejvíce citovaný článek - PubMed ID 17210765
Lipophosphonoxins (LPPOs) represent a new group of membrane-targeting antibiotics. Three generations of LPPOs have been described: First-generation LPPOs, second-generation LPPOs, and LEGO-LPPOs. All three generations have a similar mode of bactericidal action of targeting and disrupting the bacterial cytoplasmic membrane of prokaryotic cells, with limited effect on eukaryotic cells. First-generation LPPOs showed excellent bactericidal activity against Gram-positive species, including multiresistant strains. Second-generation LPPOs broaden the antibiotic effect also against Gram-negative bacteria. However, both first- and second-generation LPPOs lose their antibacterial activity in the presence of serum albumin. LEGO-LPPOs were found to be active against both Gram-positive and Gram-negative bacteria, have better selectivity as compared to first- and second-generation resistance to LEGO-LPPOs was also not observed, and are active even in the presence of serum albumin. Second-generation LPPOs have been studied as antimicrobial additives in bone cement and as nanofiber dressing components in the treatment of wound infections in mice. Second-generation LPPOs and LEGO-LPPOs were also tested to treat ex vivo simulated endodontic infections in dental root canals. The results of all these studies were encouraging and suggested further investigation of LPPOs in these indications. This paper aims to review and compile published data on LPPOs.
- Klíčová slova
- LPPOs, Lipophosphonoxins, antibiotics, antimicrobial resistance,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The alarming rise of bacterial antibiotic resistance requires the development of new compounds. Such compounds, lipophosphonoxins (LPPOs), were previously reported to be active against numerous bacterial species, but serum albumins abolished their activity. Here we describe the synthesis and evaluation of novel antibacterial compounds termed LEGO-LPPOs, loosely based on LPPOs, consisting of a central linker module with two attached connector modules on either side. The connector modules are then decorated with polar and hydrophobic modules. We performed an extensive structure-activity relationship study by varying the length of the linker and hydrophobic modules. The best compounds were active against both Gram-negative and Gram-positive species including multiresistant strains and persisters. LEGO-LPPOs act by first depleting the membrane potential and then creating pores in the cytoplasmic membrane. Importantly, their efficacy is not affected by the presence of serum albumins. Low cytotoxicity and low propensity for resistance development demonstrate their potential for therapeutic use.
- MeSH
- albuminy MeSH
- antibakteriální látky * chemie MeSH
- buněčná membrána MeSH
- gramnegativní bakterie MeSH
- grampozitivní bakterie * MeSH
- mikrobiální testy citlivosti MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- albuminy MeSH
- antibakteriální látky * MeSH