Nejvíce citovaný článek - PubMed ID 17244620
Both the N-terminal loop and wing W2 of the forkhead domain of transcription factor Foxo4 are important for DNA binding
Protein radical labeling, like fast photochemical oxidation of proteins (FPOP), coupled to a top-down mass spectrometry (MS) analysis offers an alternative analytical method for probing protein structure or protein interaction with other biomolecules, for instance, proteins and DNA. However, with the increasing mass of studied analytes, the MS/MS spectra become complex and exhibit a low signal-to-noise ratio. Nevertheless, these difficulties may be overcome by protein isotope depletion. Thus, we aimed to use protein isotope depletion to analyze FPOP-oxidized samples by top-down MS analysis. For this purpose, we prepared isotopically natural (IN) and depleted (ID) forms of the FOXO4 DNA binding domain (FOXO4-DBD) and studied the protein-DNA interaction interface with double-stranded DNA, the insulin response element (IRE), after exposing the complex to hydroxyl radicals. As shown by comparing tandem mass spectra of natural and depleted proteins, the ID form increased the signal-to-noise ratio of useful fragment ions, thereby enhancing the sequence coverage by more than 19%. This improvement in the detection of fragment ions enabled us to detect 22 more oxidized residues in the ID samples than in the IN sample. Moreover, less common modifications were detected in the ID sample, including the formation of ketones and lysine carbonylation. Given the higher quality of ID top-down MSMS data set, these results provide more detailed information on the complex formation between transcription factors and DNA-response elements. Therefore, our study highlights the benefits of isotopic depletion for quantitative top-down proteomics. Data are available via ProteomeXchange with the identifier PXD044447.
- MeSH
- DNA MeSH
- ionty MeSH
- izotopy MeSH
- proteiny * analýza MeSH
- tandemová hmotnostní spektrometrie * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- ionty MeSH
- izotopy MeSH
- proteiny * MeSH
Neural precursor cells expressed developmentally downregulated protein 4-2 (Nedd4-2), a homologous to the E6-AP carboxyl terminus (HECT) ubiquitin ligase, triggers the endocytosis and degradation of its downstream target molecules by regulating signal transduction through interactions with other targets, including 14-3-3 proteins. In our previous study, we found that 14-3-3 binding induces a structural rearrangement of Nedd4-2 by inhibiting interactions between its structured domains. Here, we used time-resolved fluorescence intensity and anisotropy decay measurements, together with fluorescence quenching and mass spectrometry, to further characterize interactions between Nedd4-2 and 14-3-3 proteins. The results showed that 14-3-3 binding affects the emission properties of AEDANS-labeled WW3, WW4, and, to a lesser extent, WW2 domains, and reduces their mobility, but not those of the WW1 domain, which remains mobile. In contrast, 14-3-3 binding has the opposite effect on the active site of the HECT domain, which is more solvent exposed and mobile in the complexed form than in the apo form of Nedd4-2. Overall, our results suggest that steric hindrance of the WW3 and WW4 domains combined with conformational changes in the catalytic domain may account for the 14-3-3 binding-mediated regulation of Nedd4-2.
- MeSH
- endozomální třídící komplexy pro transport * metabolismus MeSH
- katalytická doména MeSH
- nervové kmenové buňky * metabolismus MeSH
- proteiny 14-3-3 metabolismus MeSH
- ubikvitinligasy Nedd4 metabolismus MeSH
- ubikvitinligasy metabolismus MeSH
- vazba proteinů MeSH
- WW domény MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- endozomální třídící komplexy pro transport * MeSH
- proteiny 14-3-3 MeSH
- ubikvitinligasy Nedd4 MeSH
- ubikvitinligasy MeSH
Protein hydrogen/deuterium exchange (HDX) coupled to mass spectrometry (MS) can be used to study interactions of proteins with various ligands, to describe the effects of mutations, or to reveal structural responses of proteins to different experimental conditions. It is often described as a method with virtually no limitations in terms of protein size or sample composition. While this is generally true, there are, however, ligands or buffer components that can significantly complicate the analysis. One such compound, that can make HDX-MS troublesome, is DNA. In this chapter, we will focus on the analysis of protein-DNA interactions, describe the detailed protocol, and point out ways to overcome the complications arising from the presence of DNA.
- Klíčová slova
- DNA, Hydrogen/deuterium exchange, Protein–DNA binding, Structural mass spectrometry, Transcription factor,
- MeSH
- analýza dat MeSH
- chromatografie kapalinová MeSH
- DNA vazebné proteiny chemie metabolismus MeSH
- DNA chemie metabolismus MeSH
- interakční proteinové domény a motivy MeSH
- lidé MeSH
- transkripční faktory MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- vodík/deuteriová výměna a hmotnostní spektrometrie * metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- DNA MeSH
- transkripční faktory MeSH
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19). SARS-CoV-2 is a single-stranded positive-sense RNA virus. Like other coronaviruses, SARS-CoV-2 has an unusually large genome that encodes four structural proteins and sixteen nonstructural proteins. The structural nucleocapsid phosphoprotein N is essential for linking the viral genome to the viral membrane. Both N-terminal RNA binding (N-NTD) and C-terminal dimerization domains are involved in capturing the RNA genome and, the intrinsically disordered region between these domains anchors the ribonucleoprotein complex to the viral membrane. Here, we characterized the structure of the N-NTD and its interaction with RNA using NMR spectroscopy. We observed a positively charged canyon on the surface of the N-NTD that might serve as a putative RNA binding site similarly to other coronaviruses. The subsequent NMR titrations using single-stranded and double-stranded RNA revealed a much more extensive U-shaped RNA-binding cleft lined with regularly distributed arginines and lysines. The NMR data supported by mutational analysis allowed us to construct hybrid atomic models of the N-NTD/RNA complex that provided detailed insight into RNA recognition.
- MeSH
- COVID-19 * MeSH
- fosfoproteiny chemie genetika MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie MeSH
- nukleokapsida - proteiny chemie genetika MeSH
- RNA virová chemie genetika MeSH
- SARS-CoV-2 chemie genetika MeSH
- simulace molekulového dockingu * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfoproteiny MeSH
- nukleokapsida - proteiny MeSH
- RNA virová MeSH
FOXO transcription factors are critical regulators of cell homeostasis and steer cell death, differentiation and longevity in mammalian cells. By combined pharmacophore-modeling-based in silico and fluorescence polarization-based screening we identified small molecules that physically interact with the DNA-binding domain (DBD) of FOXO3 and modulate the FOXO3 transcriptional program in human cells. The mode of interaction between compounds and the FOXO3-DBD was assessed via NMR spectroscopy and docking studies. We demonstrate that compounds S9 and its oxalate salt S9OX interfere with FOXO3 target promoter binding, gene transcription and modulate the physiologic program activated by FOXO3 in cancer cells. These small molecules prove the druggability of the FOXO-DBD and provide a structural basis for modulating these important homeostasis regulators in normal and malignant cells.
- Klíčová slova
- FOXO transcription factors, biochemistry, cancer biology, chemical biology, docking, drug targeting, human, molecular biophysics, pharmacophore modelling, small compounds, structural biology,
- MeSH
- DNA chemie genetika metabolismus MeSH
- genetická transkripce účinky léků MeSH
- genový knockdown MeSH
- HEK293 buňky MeSH
- knihovny malých molekul chemie metabolismus farmakologie MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie MeSH
- molekulární modely MeSH
- nádorové buněčné linie MeSH
- promotorové oblasti (genetika) genetika MeSH
- protein FOXO3 chemie genetika metabolismus MeSH
- proteinové domény MeSH
- simulace molekulového dockingu MeSH
- stanovení celkové genové exprese metody MeSH
- vazba proteinů MeSH
- vazebná místa genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- FOXO3 protein, human MeSH Prohlížeč
- knihovny malých molekul MeSH
- protein FOXO3 MeSH
The limited information available on the structure of complexes involving transcription factors and cognate DNA response elements represents a major obstacle in the quest to understand their mechanism of action at the molecular level. We implemented a concerted structural proteomics approach, which combined hydrogen-deuterium exchange (HDX), quantitative protein-protein and protein-nucleic acid cross-linking (XL), and homology analysis, to model the structure of the complex between the full-length DNA binding domain (DBD) of Forkhead box protein O4 (FOXO4) and its DNA binding element (DBE). The results confirmed that FOXO4-DBD assumes the characteristic forkhead topology shared by these types of transcription factors, but its binding mode differs significantly from those of other members of the family. The results showed that the binding interaction stabilized regions that were rather flexible and disordered in the unbound form. Surprisingly, the conformational effects were not limited only to the interface between bound components, but extended also to distal regions that may be essential to recruiting additional factors to the transcription machinery. In addition to providing valuable new insights into the binding mechanism, this project provided an excellent evaluation of the merits of structural proteomics approaches in the investigation of systems that are not directly amenable to traditional high-resolution techniques.
- Klíčová slova
- DNA, FOXO4, cross-linking, molecular modeling, protein, protein-nucleic acid cross-linking, trans-dichlorodiamineplatinum(II), hydrogen-deuterium exchange, transcription factor, transplatin,
- MeSH
- DNA vazebné proteiny chemie metabolismus MeSH
- DNA chemie metabolismus MeSH
- hmotnostní spektrometrie MeSH
- molekulární struktura MeSH
- responzivní elementy MeSH
- transkripční faktory chemie metabolismus MeSH
- vodík-deuteriová výměna MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- DNA MeSH
- transkripční faktory MeSH
Regulator of G protein signaling (RGS) proteins function as GTPase-activating proteins for the α-subunit of heterotrimeric G proteins. The function of certain RGS proteins is negatively regulated by 14-3-3 proteins, a family of highly conserved regulatory molecules expressed in all eukaryotes. In this study, we provide a structural mechanism for 14-3-3-dependent inhibition of RGS3-Gα interaction. We have used small angle x-ray scattering, hydrogen/deuterium exchange kinetics, and Förster resonance energy transfer measurements to determine the low-resolution solution structure of the 14-3-3ζ·RGS3 complex. The structure shows the RGS domain of RGS3 bound to the 14-3-3ζ dimer in an as-yet-unrecognized manner interacting with less conserved regions on the outer surface of the 14-3-3 dimer outside its central channel. Our results suggest that the 14-3-3 protein binding affects the structure of the Gα interaction portion of RGS3 as well as sterically blocks the interaction between the RGS domain and the Gα subunit of heterotrimeric G proteins.
- MeSH
- cirkulární dichroismus MeSH
- fosforylace MeSH
- hmotnostní spektrometrie MeSH
- lidé MeSH
- maloúhlový rozptyl MeSH
- proteiny 14-3-3 chemie genetika metabolismus MeSH
- proteiny aktivující GTPasu chemie genetika metabolismus MeSH
- proteiny RGS MeSH
- proteiny vázající GTP chemie genetika metabolismus MeSH
- rezonanční přenos fluorescenční energie MeSH
- sekundární struktura proteinů MeSH
- signální transdukce MeSH
- terciární struktura proteinů MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny 14-3-3 MeSH
- proteiny aktivující GTPasu MeSH
- proteiny RGS MeSH
- proteiny vázající GTP MeSH
- RGS3 protein, human MeSH Prohlížeč