Nejvíce citovaný článek - PubMed ID 17335896
Multifunctional and resistant 3D structures represent a great promise and a great challenge in bone tissue engineering. This study addresses this problem by employing polycaprolactone (PCL)-based scaffolds added with hydroxyapatite (HAp) and superparamagnetic iron oxide nanoparticles (SPION), able to drive on demand the necessary cells and other bioagents for a high healing efficiency. PCL-HAp-SPION scaffolds with different concentrations of the superparamagnetic component were developed through the 3D-printing technology and the specific topographical features were detected by Atomic Force and Magnetic Force Microscopy (AFM-MFM). AFM-MFM measurements confirmed a homogenous distribution of HAp and SPION throughout the surface. The magnetically assisted seeding of cells in the scaffold resulted most efficient for the 1% SPION concentration, providing good cell entrapment and adhesion rates. Mesenchymal Stromal Cells (MSCs) seeded onto PCL-HAp-1% SPION showed a good cell proliferation and intrinsic osteogenic potential, indicating no toxic effects of the employed scaffold materials. The performed characterizations and the collected set of data point on the inherent osteogenic potential of the newly developed PCL-HAp-1% SPION scaffolds, endorsing them towards next steps of in vitro and in vivo studies and validations.
- Klíčová slova
- 3D additive manufacturing, nanocomposites, polycaprolactone/hydroxyapatite scaffolds, superparamagnetic nanoparticles, tissue engineering,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Collagen-based scaffolds provide a promising option for the treatment of bone defects. One of the key parameters of such scaffolds consists of porosity, including pore size. However, to date, no agreement has been found with respect to the methodology for pore size evaluation. Since the determination of the exact pore size value is not possible, the comparison of the various methods applied is complicated. Hence, this study focuses on the comparison of two widely-used methods for the characterization of porosity-scanning electron microscopy (SEM) and micro-computed tomography (micro-CT). METHODS: 7 types of collagen-based composite scaffold models were prepared by means of lyophilization and collagen cross-linking. Micro-CT analysis was performed in 3D and in 2D (pore size parameters were: major diameter, mean thickness, biggest inner circle diameter and area-equivalent circle diameter). Afterwards, pore sizes were analyzed in the same specimens by an image analysis of SEM microphotographs. The results were statistically evaluated. The comparison of the various approaches to the evaluation of pore size was based on coefficients of variance and the semi-quantitative assessment of selected qualities (e.g. the potential for direct 3D analysis, whole specimen analysis, non-destructivity). RESULTS: The pore size values differed significantly with respect to the parameters applied. Median values of pore size values were ranging from 20 to 490 µm. The SEM values were approximately 3 times higher than micro-CT 3D values for each specimen. The Mean thickness was the most advantageous micro-CT 2D approach. Coefficient of variance revealed no differences among pore size parameters (except major diameter). The semi-quantitative comparison approach presented pore size parameters in descending order with regard to the advantages thereof as follows: (1) micro-CT 3D, (2) mean thickness and SEM, (3) biggest inner circle diameter, major diameter and area equivalent circle diameter. CONCLUSION: The results indicated that micro-CT 3D evaluation provides the most beneficial overall approach. Micro-CT 2D analysis (mean thickness) is advantageous in terms of its time efficacy. SEM is still considered as gold standard for its widespread use and high resolution. However, exact comparison of pore size analysis in scaffold materials remains a challenge.
- Klíčová slova
- Bone regeneration, Micro-CT, Pore size, Porosity, SEM, Scaffold,
- MeSH
- kolagen chemie MeSH
- poréznost MeSH
- rentgenová mikrotomografie MeSH
- tkáňové inženýrství * MeSH
- tkáňové podpůrné struktury * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kolagen MeSH
Thermal plasma spray is a common, well-established technology used in various application fields. Nevertheless, in our work, this technology was employed in a completely new way; for the preparation of bulk titanium. The aim was to produce titanium with properties similar to human bone to be used for bone augmentations. Titanium rods sprayed on a thin substrate wire exerted a porosity of about 15%, which yielded a significant decrease of Young's modulus to the bone range and provided rugged topography for enhanced biological fixation. For the first verification of the suitability of the selected approach, tests of the mechanical properties in terms of compression, bending, and impact were carried out, the surface was characterized, and its compatibility with bone cells was studied. While preserving a high enough compressive strength of 628 MPa, the elastic modulus reached 11.6 GPa, thus preventing a stress-shielding effect, a generally known problem of implantable metals. U-2 OS and Saos-2 cells derived from bone osteosarcoma grown on the plasma-sprayed surface showed good viability.
- Klíčová slova
- bone augmentation, plasma spray, porosity, titanium,
- Publikační typ
- časopisecké články MeSH