Most cited article - PubMed ID 17439609
Genetic analysis of autosomal and X-linked markers across a mouse hybrid zone
Many closely related species continue to hybridise after millions of generations of divergence. However, the extent to which current patterning in hybrid zones connects back to the speciation process remains unclear: does evidence for current multilocus barriers support the hypothesis of speciation due to multilocus divergence? We analyse whole-genome sequencing data to investigate the speciation history of the scarce swallowtails Iphiclidespodalirius and I . feisthamelii, which abut at a narrow ( ∼ 25 km) contact zone north of the Pyrenees. We first quantify the heterogeneity of effective migration rate under a model of isolation with migration, using genomes sampled across the range to identify long-term barriers to gene flow. Secondly, we investigate the recent ancestry of individuals from the hybrid zone using genome polarisation and estimate the coupling coefficient under a model of a multilocus barrier. We infer a low rate of long-term gene flow from I . feisthamelii into I . podalirius - the direction of which matches the admixture across the hybrid zone - and complete reproductive isolation across ≈ 33% of the genome. Our contrast of recent and long-term gene flow shows that regions of low recent hybridisation are indeed enriched for long-term barriers which maintain divergence between these hybridising sister species. This finding paves the way for future analysis of the evolution of reproductive isolation along the speciation continuum.
- MeSH
- Phylogeny MeSH
- Genome, Insect * MeSH
- Genomics MeSH
- Hybridization, Genetic * MeSH
- Butterflies * genetics classification MeSH
- Reproductive Isolation MeSH
- Whole Genome Sequencing MeSH
- Gene Flow * genetics MeSH
- Genetic Speciation MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
The classical definition posits hybrid sterility as a phenomenon when two parental taxa each of which is fertile produce a hybrid that is sterile. The first hybrid sterility gene in vertebrates, Prdm9, coding for a histone methyltransferase, was identified in crosses between two laboratory mouse strains derived from Mus mus musculus and M. m. domesticus subspecies. The unique function of PRDM9 protein in the initiation of meiotic recombination led to the discovery of the basic molecular mechanism of hybrid sterility in laboratory crosses. However, the role of this protein as a component of reproductive barrier outside the laboratory model remained unclear. Here, we show that the Prdm9 allelic incompatibilities represent the primary cause of reduced fertility in intersubspecific hybrids between M. m. musculus and M. m. domesticus including 16 musculus and domesticus wild-derived strains. Disruption of fertility phenotypes correlated with the rate of failure of synapsis between homologous chromosomes in meiosis I and with early meiotic arrest. All phenotypes were restored to normal when the domesticus Prdm9dom2 allele was substituted with the Prdm9dom2H humanized variant. To conclude, our data show for the first time the male infertility of wild-derived musculus and domesticus subspecies F1 hybrids controlled by Prdm9 as the major hybrid sterility gene. The impairment of fertility surrogates, testes weight and sperm count, correlated with increasing difficulties of meiotic synapsis of homologous chromosomes and with meiotic arrest, which we suppose reflect the increasing asymmetry of PRDM9-dependent DNA double-strand breaks.
- Keywords
- Prdm9 polymorphism, HORMAD2, meiotic chromosome synapsis, reproductive isolation, synaptonemal complex,
- MeSH
- Phylogeography MeSH
- Genetic Introgression * MeSH
- Histone-Lysine N-Methyltransferase genetics MeSH
- Infertility genetics MeSH
- Meiosis MeSH
- Mice genetics MeSH
- Reproductive Isolation * MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice genetics MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Histone-Lysine N-Methyltransferase MeSH
- prdm9 protein, mouse MeSH Browser
The widespread and locally massive introgression of Y chromosomes of the eastern house mouse (Mus musculus musculus) into the range of the western subspecies (M. m. domesticus) in Central Europe calls for an explanation of its underlying mechanisms. Given the paternal inheritance pattern, obvious candidates for traits mediating the introgression are characters associated with sperm quantity and quality. We can also expect traits such as size, aggression or the length of generation cycles to facilitate the spread. We have created two consomic strains carrying the non-recombining region of the Y chromosome of the opposite subspecies, allowing us to study introgression in both directions, something impossible in nature due to the unidirectionality of introgression. We analyzed several traits potentially related to male fitness. Transmission of the domesticus Y onto the musculus background had negative effects on all studied traits. Likewise, domesticus males possessing the musculus Y had, on average, smaller body and testes and lower sperm count than the parental strain. However, the same consomic males tended to produce less- dissociated sperm heads, to win more dyadic encounters, and to have shorter generation cycles than pure domesticus males. These data suggest that the domesticus Y is disadvantageous on the musculus background, while introgression in the opposite direction can confer a recognizable, though not always significant, selective advantage. Our results are thus congruent with the unidirectional musculus → domesticus Y chromosome introgression in Central Europe. In addition to some previous studies, they show this to be a multifaceted phenomenon demanding a multidisciplinary approach.
- MeSH
- Aggression * MeSH
- Y Chromosome * genetics MeSH
- Phenotype MeSH
- Mice genetics MeSH
- Spermatozoa physiology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice genetics MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH
Reproductive isolation barriers maintain the integrity of species by preventing interspecific gene flow. They involve temporal, habitat or behavioral isolation acting before fertilization, and postzygotic isolation manifested as hybrid mortality or sterility. One of the approaches of how to study reproductive isolation barriers is through the analysis of hybrid zones. In this paper, we describe the structure of a hybrid zone between two crested newt species (Triturus cristatus and T. carnifex) in the southern part of the Czech Republic using morphological, microsatellite, and mitochondrial (mtDNA) markers. Specifically, we tested the hypothesis that the structure of the hybrid zone is maintained by species-specific habitat preferences. Comparing the genetic structure of populations with geographical and ecological parameters, we found that the hybrid zone was structured primarily geographically, with T. cristatus-like populations occurring in the northeast and T. carnifex-like populations in the southwest. Despite T. cristatus tending to occur in deeper ponds and T. carnifex on localities with more shading, the effect of both ecological parameters on the structure of the zone was minimal. Next, we corroborated that T. carnifex individuals and some hybrids possess mtDNA of T. dobrogicus, whose nuclear background was not detected in the studied hybrid zone. Hybridization between T. carnifex and T. dobrogicus (resulting in unidirectional mtDNA introgression) had to predate subsequent formation of the hybrid zone between T. cristatus and T. carnifex. Populations of crested newts in the southern part of the Czech Republic thus represent a genetic mosaic of nuclear and mitochondrial genomes of three species.
- Keywords
- Salamandridae, amphibia, hybridization, microsatellites, mtDNA, reproductive isolation barrier,
- Publication type
- Journal Article MeSH
F1 hybrids between mouse inbred strains PWD and C57BL/6 represent the most thoroughly genetically defined model of hybrid sterility in vertebrates. Hybrid male sterility can be fully reconstituted from three components of this model, the Prdm9 gene, intersubspecific homeology of Mus musculus musculus and Mus musculus domesticus autosomes, and the X-linked Hstx2 locus. Hstx2 modulates the extent of Prdm9-dependent meiotic arrest and harbors two additional factors responsible for intersubspecific introgression-induced oligospermia (Hstx1) and meiotic recombination rate (Meir1). To facilitate positional cloning and to overcome the recombination suppression within the 4.3 Mb encompassing the Hstx2 locus, we designed Hstx2-CRISPR and SPO11/Cas9 transgenes aimed to induce DNA double-strand breaks specifically within the Hstx2 locus. The resulting recombinant reduced the Hstx2 locus to 2.70 Mb (chromosome X: 66.51-69.21 Mb). The newly defined Hstx2 locus still operates as the major X-linked factor of the F1 hybrid sterility, and controls meiotic chromosome synapsis and meiotic recombination rate. Despite extensive further crosses, the 2.70 Mb Hstx2 interval behaved as a recombination cold spot with reduced PRDM9-mediated H3K4me3 hotspots and absence of DMC1-defined DNA double-strand-break hotspots. To search for structural anomalies as a possible cause of recombination suppression, we used optical mapping and observed high incidence of subspecies-specific structural variants along the X chromosome, with a striking copy number polymorphism of the microRNA Mir465 cluster. This observation together with the absence of a strong sterility phenotype in Fmr1 neighbor (Fmr1nb) null mutants support the role of microRNA as a likely candidate for Hstx2.
- Keywords
- Bionano optical mapping, Fmr1nb, Hybrid sterility X2, Prdm9, SPO11Cas9 transgene, Speciation,
- MeSH
- X Chromosome genetics MeSH
- Histone-Lysine N-Methyltransferase genetics MeSH
- Homologous Recombination MeSH
- Meiosis MeSH
- MicroRNAs genetics MeSH
- Genes, Modifier * MeSH
- Infertility, Male genetics MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Polymorphism, Genetic * MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Histone-Lysine N-Methyltransferase MeSH
- MicroRNAs MeSH
- prdm9 protein, mouse MeSH Browser
The X and Z sex chromosomes play a disproportionately large role in intrinsic postzygotic isolation. The underlying mechanisms of this large X/Z effect are, however, still poorly understood. Here we tested whether faster rates of molecular evolution caused by more intense positive selection or genetic drift on the Z chromosome could contribute to the large Z effect in two closely related passerine birds, the Common Nightingale (Luscinia megarhynchos) and the Thrush Nightingale (L. luscinia). We found that the two species differ in patterns of molecular evolution on the Z chromosome. The Z chromosome of L. megarhynchos showed lower levels of within-species polymorphism and an excess of non-synonymous polymorphisms relative to non-synonymous substitutions. This is consistent with increased levels of genetic drift on this chromosome and may be attributed to more intense postcopulatory sexual selection acting on L. megarhynchos males as was indicated by significantly longer sperm and higher between-male variation in sperm length in L. megarhynchos compared to L. luscinia. Interestingly, analysis of interspecific gene flow on the Z chromosome revealed relatively lower levels of introgression from L. megarhynchos to L. luscinia than vice versa, indicating that the Z chromosome of L. megarhynchos accumulated more hybrid incompatibilities. Our results are consistent with the view that postcopulatory sexual selection may reduce the effective population size of the Z chromosome and thus lead to stronger genetic drift on this chromosome in birds. This can result in relatively faster accumulation of hybrid incompatibilities on the Z and thus contribute to the large Z effect.
- MeSH
- Species Specificity MeSH
- Genetic Variation MeSH
- Genetic Drift MeSH
- Evolution, Molecular MeSH
- Sex Chromosomes genetics MeSH
- Mating Preference, Animal * MeSH
- Spermatozoa cytology MeSH
- Gene Flow MeSH
- Genetic Speciation MeSH
- Songbirds genetics physiology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Understanding the mechanisms and selective forces leading to adaptive radiations and origin of biodiversity is a major goal of evolutionary biology. Acrocephalus warblers are small passerines that underwent an adaptive radiation in the last approximately 10 million years that gave rise to 37 extant species, many of which still hybridize in nature. Acrocephalus warblers have served as model organisms for a wide variety of ecological and behavioral studies, yet our knowledge of mechanisms and selective forces driving their radiation is limited. Here we studied patterns of interspecific gene flow and selection across three European Acrocephalus warblers to get a first insight into mechanisms of radiation of this avian group. RESULTS: We analyzed nucleotide variation at eight nuclear loci in three hybridizing Acrocephalus species with overlapping breeding ranges in Europe. Using an isolation-with-migration model for multiple populations, we found evidence for unidirectional gene flow from A. scirpaceus to A. palustris and from A. palustris to A. dumetorum. Gene flow was higher between genetically more closely related A. scirpaceus and A. palustris than between ecologically more similar A. palustris and A. dumetorum, suggesting that gradual accumulation of intrinsic barriers rather than divergent ecological selection are more efficient in restricting interspecific gene flow in Acrocephalus warblers. Although levels of genetic differentiation between different species pairs were in general not correlated, we found signatures of apparently independent instances of positive selection at the same two Z-linked loci in multiple species. CONCLUSIONS: Our study brings the first evidence that gene flow occurred during Acrocephalus radiation and not only between sister species. Interspecific gene flow could thus be an important source of genetic variation in individual Acrocephalus species and could have accelerated adaptive evolution and speciation rate in this avian group by creating novel genetic combinations and new phenotypes. Independent instances of positive selection at the same loci in multiple species indicate an interesting possibility that the same loci might have contributed to reproductive isolation in several speciation events.
- Keywords
- Acrocephalus warblers, Adaptive radiation, Gene flow, Parallel adaptive evolution, Speciation, Z chromosome,
- MeSH
- Biodiversity MeSH
- Biological Evolution MeSH
- Phenotype MeSH
- Genetic Variation MeSH
- Hybridization, Genetic MeSH
- Sex Chromosomes * MeSH
- Reproductive Isolation MeSH
- Selection, Genetic * MeSH
- Gene Flow * MeSH
- Genetic Speciation MeSH
- Songbirds genetics MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe MeSH
Host-parasite interaction studies across hybrid zones often focus on host genetic variation, treating parasites as homogeneous. 'Intimately' associated hosts and parasites might be expected to show similar patterns of genetic structure. In the literature, factors such as no intermediate host and no free-living stage have been proposed as 'intimacy' factors likely constraining parasites to closely follow the evolutionary history of their hosts. To test whether the whipworm, Trichuris muris, is intimately associated with its house mouse host, we studied its population genetics across the European house mouse hybrid zone (HMHZ) which has a strong central barrier to gene flow between mouse taxa. T. muris has a direct life cycle and nonmobile free stage: if these traits constrain the parasite to an intimate association with its host we expect a geographic break in the parasite genetic structure across the HMHZ. We genotyped 205 worms from 56 localities across the HMHZ and additionally T. muris collected from sympatric woodmice (Apodemus spp.) and allopatric murine species, using mt-COX1, ITS1-5.8S-ITS2 rDNA and 10 microsatellites. We show four haplogroups of mt-COX1 and three clear ITS1-5.8S-ITS2 clades in the HMHZ suggesting a complex demographic/phylogeographic history. Microsatellites show strong structure between groups of localities. However, no marker type shows a break across the HMHZ. Whipworms from Apodemus in the HMHZ cluster, and share mitochondrial haplotypes, with those from house mice. We conclude Trichuris should not be regarded as an 'intimate' parasite of the house mouse: while its life history might suggest intimacy, passage through alternate hosts is sufficiently common to erase signal of genetic structure associated with any particular host taxon.
- Keywords
- Hybrid zones, Mus musculus, parasite life history traits, phylogeography, population structure,
- Publication type
- Journal Article MeSH
Reproductive isolation is crucial for the process of speciation to progress. Sex chromosomes have been assigned a key role in driving reproductive isolation but empirical evidence from natural population processes has been restricted to organisms with degenerated sex chromosomes such as mammals and birds. Here we report restricted introgression at sex-linked compared to autosomal markers in a hybrid zone between two incipient species of European tree frog, Hyla arborea and H. orientalis, whose homologous X and Y sex chromosomes are undifferentiated. This large X-effect cannot result from the dominance or faster-X aspects of Haldane's rule, which are specific to degenerated sex chromosomes, but rather supports a role for faster-heterogametic-sex or faster-male evolutionary processes. Our data suggest a prominent contribution of undifferentiated sex chromosomes to speciation.
- MeSH
- X Chromosome genetics MeSH
- Y Chromosome genetics MeSH
- Ranidae MeSH
- Sex Differentiation genetics MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Hybridization between distinct species of animals and subsequent genetic introgression plays a considerable role in the speciation process and the emergence of adaptive characters. Fitness of between-species hybrids usually sharply decreases with the divergence time of the concerned species and the divergence depth, which still allows for a successful crossing differs among principal clades of vertebrates. Recently, a review of hybridization events among distinct lizard species revealed that lizards belong to vertebrates with a highly developed ability to hybridize. In spite of this, reliable reports of experimental hybridizations between genetically fairly divergent species are only exceptional. Here, we show the results of the crossing of two distinct allopatric species of eyelid geckos possessing temperature sex determination and lacking sex chromosomes: Eublepharis macularius distributed in Pakistan/Afghanistan area and E. angramainyu, which inhabits Mesopotamia and adjacent areas. We demonstrated that F1 hybrids were viable and fertile, and the introgression of E. angramainyu genes into the E. macularius genome can be enabled via a backcrossing. The examined hybrids (except those of the F2 generation) displayed neither malformations nor a reduced survival. Analyses of morphometric and coloration traits confirmed phenotypic distinctness of both parental species and their F1 hybrids. These findings contrast with long-term geographic and an evolutionary separation of the studied species. Thus, the occurrence of fertile hybrids of comparably divergent species, such as E. angramainyu and E. macularius, may also be expected in other taxa of squamates. This would violate the current estimates of species diversity in lizards.
- MeSH
- Species Specificity MeSH
- Phenotype * MeSH
- Fertility genetics MeSH
- Genetic Variation * MeSH
- Hybridization, Genetic genetics MeSH
- Lizards genetics MeSH
- Sex Chromosomes MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH