Most cited article - PubMed ID 17622182
Flavin-mediated photocatalytic oxidations are established in synthetic chemistry. In contrast, their use in reductive chemistry is rare. Deazaflavins with a much lower reduction potential are even better suited for reductive chemistry rendering also deazaflavin semiquinones as strong reductants. However, no direct evidence exists for the involvement of these radical species in reductive processes. Here, we synthesise deazaflavins with different substituents at C5 and demonstrate their photocatalytic activity in the dehalogenation of p-halogenanisoles with best performance under basic conditions. Mechanistic investigations reveal a consecutive photo-induced electron transfer via the semiquinone form of the deazaflavin as part of a triplet-correlated radical pair after electron transfer from a sacrificial electron donor to the triplet state. A second electron transfer from the excited semiquinone to p-halogenanisoles triggers the final product formation. This study provides first evidence that the reductive power of excited deazaflavin semiquinones can be used in photocatalytic reductive chemistry.
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Flavin-based catalysts are photoactive in the visible range which makes them useful in biology and chemistry. Herein, we present electrospray-ionization mass-spectrometry detection of short-lived intermediates in photooxidation of toluene catalysed by flavinium ions (Fl+ ). Previous studies have shown that photoexcited flavins react with aromates by proton-coupled electron transfer (PCET) on the microsecond time scale. For Fl+ , PCET leads to FlH.+ with the H-atom bound to the N5 position. We show that the reaction continues by coupling between FlH.+ and hydroperoxy or benzylperoxy radicals at the C4a position of FlH.+ . These results demonstrate that the N5-blocking effect reported for alkylated flavins is also active after PCET in these photocatalytic reactions. Structures of all intermediates were fully characterised by isotopic labelling and by photodissociation spectroscopy. These tools provide a new way to study reaction intermediates in the sub-second time range.
- Keywords
- flavin, ion spectroscopy, mass spectrometry, peroxy intermediates, photooxidation,
- MeSH
- Flavins chemistry MeSH
- Spectrometry, Mass, Electrospray Ionization MeSH
- Catalysis MeSH
- Lasers, Semiconductor * MeSH
- Oxidation-Reduction MeSH
- Hydrogen Peroxide chemistry MeSH
- Protons MeSH
- Electron Transport MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Flavins MeSH
- Hydrogen Peroxide MeSH
- Protons MeSH