Most cited article - PubMed ID 18195350
Risperidone and ritanserin but not haloperidol block effect of dizocilpine on the active allothetic place avoidance task
Muscarinic acetylcholine receptors (mAChRs) have been found to regulate many diverse functions, ranging from motivation and feeding to spatial navigation, an important and widely studied type of cognitive behavior. Systemic administration of non-selective antagonists of mAChRs, such as scopolamine or atropine, have been found to have adverse effects on a vast majority of place navigation tasks. However, many of these results may be potentially confounded by disruptions of functions other than spatial learning and memory. Although studies with selective antimuscarinics point to mutually opposite effects of M1 and M2 receptors, their particular contribution to spatial cognition is still poorly understood, partly due to a lack of truly selective agents. Furthermore, constitutive knock-outs do not always support results from selective antagonists. For modeling impaired spatial cognition, the scopolamine-induced amnesia model still maintains some limited validity, but there is an apparent need for more targeted approaches such as local intracerebral administration of antagonists, as well as novel techniques such as optogenetics focused on cholinergic neurons and chemogenetics aimed at cells expressing metabotropic mAChRs.
- Keywords
- acetylcholine, behavior, biperiden, learning, memory, receptor, rodents, scopolamine,
- Publication type
- Journal Article MeSH
- Review MeSH
Patients with schizophrenia often manifest deficits in behavioral flexibility. Non-competitive NMDA receptor antagonists such as MK-801 induce schizophrenia-like symptoms in rodents, including cognitive functions. Despite work exploring flexibility has been done employing behavioral paradigms with simple stimuli, much less is known about what kinds of flexibility are affected in an MK-801 model of schizophrenia-like behavior in the spatial domain. We used a rotating arena-based apparatus (Carousel) requiring rats to avoid an unmarked sector defined in either the reference frame of the rotating arena (arena frame task, AF) or the stationary room (room frame task, RF). We investigated behavioral flexibility in four conditions involving different cognitive loads. Each condition encompassed an initial (five sessions) and a test phase (five sessions) in which some aspects of the task were changed to test flexibility and in which rats were given saline, 0.05 mg/kg or 0.1 mg/kg MK-801 thirty minutes prior to a session. In the first condition, rats acquired avoidance in RF with clockwise rotation of the arena while in the test phase the arena rotated counterclockwise. In the second condition, rats initially acquired avoidance in RF with the sector on the north and then it was reversed to south (spatial reversal). In the third and fourth conditions, rats initially performed an AF (RF, respectively) task, followed by an RF (AF, respectively) task, testing the ability of cognitive set-shifting. We found no effect of MK-801 either on simple motor adjustment after reversal of arena rotation or on spatial reversal within the RF. In contrast, administration of MK-801 at a dose of 0.1 mg/kg interfered with set-shifting in both conditions. Furthermore, we observed MK-801 0.1 mg/kg elevated locomotion in all cases. These data suggest that blockade of NMDA receptors by acute system administration of MK-801 preferentially affects set-shifting in the cognitive domain rather than reversal.
- Keywords
- Carousel, MK-801, cognitive flexibility, rat, reversal, schizophrenia, set-shifting,
- Publication type
- Journal Article MeSH
Decreased levels of Nogo-A-dependent signaling have been shown to affect behavior and cognitive functions. In Nogo-A knockout and knockdown laboratory rodents, behavioral alterations were observed, possibly corresponding with human neuropsychiatric diseases of neurodevelopmental origin, particularly schizophrenia. This study offers further insight into behavioral manifestations of Nogo-A knockdown in laboratory rats, focusing on spatial and non-spatial cognition, anxiety levels, circadian rhythmicity, and activity patterns. Demonstrated is an impairment of cognitive functions and behavioral flexibility in a spatial active avoidance task, while non-spatial memory in a step-through avoidance task was spared. No signs of anhedonia, typical for schizophrenic patients, were observed in the animals. Some measures indicated lower anxiety levels in the Nogo-A-deficient group. Circadian rhythmicity in locomotor activity was preserved in the Nogo-A knockout rats and their circadian period (tau) did not differ from controls. However, daily activity patterns were slightly altered in the knockdown animals. We conclude that a reduction of Nogo-A levels induces changes in CNS development, manifested as subtle alterations in cognitive functions, emotionality, and activity patterns.
- Keywords
- AAPA, Carousel maze, Nogo-A, anhedonia, circadian rhythmicity, neophobia, passive avoidance,
- Publication type
- Journal Article MeSH
Flexible behavior in dynamic, real-world environments requires more than static spatial learning and memory. Discordant and unstable cues must be organized in coherent subsets to give rise to meaningful spatial representations. We model this form of cognitive coordination on a rotating arena - Carousel where arena- and room-bound spatial cues are dissociated. Hippocampal neuronal ensemble activity can repeatedly switch between multiple representations of such an environment. Injection of tetrodotoxin into one hippocampus prevents cognitive coordination during avoidance of a stationary room-defined place on the Carousel and increases coactivity of previously unrelated neurons in the uninjected hippocampus. Place avoidance on the Carousel is impaired after systemic administration of non-competitive NMDAr blockers (MK-801) used to model schizophrenia in animals and people. We tested if this effect is due to cognitive disorganization or other effect of NMDAr antagonism such as hyperlocomotion, spatial memory impairment, or general learning deficit. We also examined if the same dose of MK-801 alters patterns of immediate-early gene (IEG) expression in the hippocampus. IEG expression is triggered in neuronal nuclei in a context-specific manner after behavioral exploration and it is used to map activity in neuronal populations. IEG expression is critical for maintenance of synaptic plasticity and memory consolidation. We show that the same dose of MK-801 that impairs spatial coordination of rats on the Carousel also eliminates contextual specificity of IEG expression in hippocampal CA1 ensembles. This effect is due to increased similarity between ensembles activated in different environments, consistent with the idea that it is caused by increased coactivity between neurons, which did not previously fire together. Our data support the proposition of the Hypersynchrony theory that cognitive disorganization in psychosis is due to increased coactivity between unrelated neurons.
- Keywords
- arc, carousel, cognitive coordination, hippocampus, homer 1a, place avoidance, rotating arena, schizophrenia,
- Publication type
- Journal Article MeSH
RATIONALE: Augmentation therapy with serotonin-1A receptor (5-HT1A) partial agonists has been suggested to ameliorate psychotic symptoms in patients with schizophrenia. OBJECTIVE AND METHODS: The objective of the present study was to examine the effect of repeated administration of tandospirone (0.05 and 5 mg/kg) on locomotor activity in a novel environment and on sensorimotor gating in rats treated with the N-methyl-D-aspartate receptor antagonist MK-801, which has been used in animal models of schizophrenia. Furthermore, we sought to determine whether the effect of tandospirone on these behavioural measures is blocked by WAY 100635 (0.3 mg/kg), a 5-HT1A receptor antagonist, and whether there is an interaction between haloperidol (0.1 mg/kg; a dopamine-D2 receptor antagonist) and tandospirone. RESULTS: Tandospirone at 5 mg/kg, but not 0.05 mg/kg, decreased locomotor activity in saline or MK-801-treated rats, which were not affected by co-treatment with WAY 100635. Haloperidol decreased locomotion both in saline and MK-801-treated animals, and this effect was not evident in the latter group receiving the higher dose of tandospirone. Tandospirone (5 mg/kg)-induced disruption of sensorimotor gating in saline or MK-801-treated animals was reversed by WAY-100635, but not by haloperidol. CONCLUSIONS: These findings suggest that behavioural changes induced by tandospirone are not fully blocked by 5-HT1A antagonists and that tandospirone (5 mg/kg) potentiates the effect of MK-801. Overall, these findings point to an interaction between NMDA and 5-HT(1A) receptors. Part of the effect of tandospirone on locomotor activity may be mediated by the actions of its active metabolites on other neurotransmitter systems.
- MeSH
- Serotonin Receptor Agonists administration & dosage pharmacology MeSH
- Excitatory Amino Acid Antagonists toxicity MeSH
- Antipsychotic Agents pharmacology MeSH
- Dizocilpine Maleate toxicity MeSH
- Haloperidol pharmacology MeSH
- Isoindoles administration & dosage pharmacology MeSH
- Rats MeSH
- Disease Models, Animal MeSH
- Piperazines administration & dosage pharmacology MeSH
- Motor Activity drug effects MeSH
- Rats, Wistar MeSH
- Pyrimidines administration & dosage pharmacology MeSH
- Receptor, Serotonin, 5-HT1A drug effects metabolism MeSH
- Schizophrenia drug therapy physiopathology MeSH
- Sensory Gating drug effects MeSH
- Dose-Response Relationship, Drug MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
- Names of Substances
- Serotonin Receptor Agonists MeSH
- Excitatory Amino Acid Antagonists MeSH
- Antipsychotic Agents MeSH
- Dizocilpine Maleate MeSH
- Haloperidol MeSH
- Isoindoles MeSH
- Piperazines MeSH
- Pyrimidines MeSH
- Receptor, Serotonin, 5-HT1A MeSH
- tandospirone MeSH Browser