Nejvíce citovaný článek - PubMed ID 18253041
Isolation and characterization of the highly repeated fraction of the banana genome
The banana is a staple food crop and represents an important trade commodity for millions of people living in tropical and subtropical countries. The most important edible banana clones originated from natural crosses between diploid Musa balbisiana and various subspecies of M. acuminata. It is worth mentioning that evolution and speciation in the Musaceae family were accompanied by large-scale chromosome structural changes, indicating possible reasons for lower fertility or complete sterility of these vegetatively propagated clones. Chromosomal changes, often accompanied by changes in genome size, are one of the driving forces underlying speciation in plants. They can clarify the genomic constitution of edible bananas and shed light on their origin and on diversification processes in members of the Musaceae family. This article reviews the development of molecular cytogenetic approaches, ranging from classical fluorescence in situ hybridization (FISH) using common cytogenetic markers to oligo painting FISH. We discuss differences in genome size and chromosome number across the Musaceae family in addition to the development of new chromosome-specific cytogenetic probes and their use in genome structure and comparative karyotype analysis. The impact of these methodological advances on our knowledge of Musa genome evolution at the chromosomal level is demonstrated. In addition to citing published results, we include our own new unpublished results and outline future applications of molecular cytogenetics in banana research.
- Klíčová slova
- BAC clones, DNA repeats, chromosomes, flow cytometry, fluorescence in situ hybridization, karyotyping, oligo painting, rRNA genes,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Cultivated grasses are an important source of food for domestic animals worldwide. Increased knowledge of their genomes can speed up the development of new cultivars with better quality and greater resistance to biotic and abiotic stresses. The most widely grown grasses are tetraploid ryegrass species (Lolium) and diploid and hexaploid fescue species (Festuca). In this work, we characterized repetitive DNA sequences and their contribution to genome size in five fescue and two ryegrass species as well as one fescue and two ryegrass cultivars. RESULTS: Partial genome sequences produced by Illumina sequencing technology were used for genome-wide comparative analyses with the RepeatExplorer pipeline. Retrotransposons were the most abundant repeat type in all seven grass species. The Athila element of the Ty3/gypsy family showed the most striking differences in copy number between fescues and ryegrasses. The sequence data enabled the assembly of the long terminal repeat (LTR) element Fesreba, which is highly enriched in centromeric and (peri)centromeric regions in all species. A combination of fluorescence in situ hybridization (FISH) with a probe specific to the Fesreba element and immunostaining with centromeric histone H3 (CENH3) antibody showed their co-localization and indicated a possible role of Fesreba in centromere function. CONCLUSIONS: Comparative repeatome analyses in a set of fescues and ryegrasses provided new insights into their genome organization and divergence, including the assembly of the LTR element Fesreba. A new LTR element Fesreba was identified and found in abundance in centromeric regions of the fescues and ryegrasses. It may play a role in the function of their centromeres.
- Klíčová slova
- Centromere organization, Festuca, Illumina sequencing, Lolium, Repetitive DNA,
- MeSH
- centromera genetika MeSH
- chromozomy rostlin * MeSH
- Festuca genetika MeSH
- genom rostlinný genetika MeSH
- jílek genetika MeSH
- repetitivní sekvence nukleových kyselin * MeSH
- Publikační typ
- časopisecké články MeSH
Oligo painting FISH was established to identify all chromosomes in banana (Musa spp.) and to anchor pseudomolecules of reference genome sequence of Musa acuminata spp. malaccensis "DH Pahang" to individual chromosomes in situ. A total of 19 chromosome/chromosome-arm specific oligo painting probes were developed and were shown to be suitable for molecular cytogenetic studies in genus Musa. For the first time, molecular karyotypes of diploid M. acuminata spp. malaccensis (A genome), M. balbisiana (B genome), and M. schizocarpa (S genome) from the Eumusa section of Musa, which contributed to the evolution of edible banana cultivars, were established. This was achieved after a combined use of oligo painting probes and a set of previously developed banana cytogenetic markers. The density of oligo painting probes was sufficient to study chromosomal rearrangements on mitotic as well as on meiotic pachytene chromosomes. This advance will enable comparative FISH mapping and identification of chromosomal translocations which accompanied genome evolution and speciation in the family Musaceae.
- Klíčová slova
- Musa, banana, chromosome identification, fluorescence in situ hybridization, molecular karyotype, oligo painting FISH,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The banana family (Musaceae) includes genetically a diverse group of species and their diploid and polyploid hybrids that are widely cultivated in the tropics. In spite of their socio-economic importance, the knowledge of Musaceae genomes is basically limited to draft genome assemblies of two species, Musa acuminata and M. balbisiana. Here we aimed to complement this information by analyzing repetitive genome fractions of six species selected to represent various phylogenetic groups within the family. RESULTS: Low-pass sequencing of M. acuminata, M. ornata, M. textilis, M. beccarii, M. balbisiana, and Ensete gilletii genomes was performed using a 454/Roche platform. Sequence reads were subjected to analysis of their overall intra- and inter-specific similarities and, all major repeat families were quantified using graph-based clustering. Maximus/SIRE and Angela lineages of Ty1/copia long terminal repeat (LTR) retrotransposons and the chromovirus lineage of Ty3/gypsy elements were found to make up most of highly repetitive DNA in all species (14-34.5% of the genome). However, there were quantitative differences and sequence variations detected for classified repeat families as well as for the bulk of total repetitive DNA. These differences were most pronounced between species from different taxonomic sections of the Musaceae family, whereas pairs of closely related species (M. acuminata/M. ornata and M. beccarii/M. textilis) shared similar populations of repetitive elements. CONCLUSIONS: This study provided the first insight into the composition and sequence variation of repetitive parts of Musaceae genomes. It allowed identification of repetitive sequences specific for a single species or a group of species that can be utilized as molecular markers in breeding programs and generated computational resources that will be instrumental in repeat masking and annotation in future genome assembly projects.
- MeSH
- banánovníkovité klasifikace genetika MeSH
- DNA rostlinná analýza genetika MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genom rostlinný * MeSH
- molekulární evoluce MeSH
- repetitivní sekvence nukleových kyselin * MeSH
- sekvenční analýza DNA MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
The analysis of large genomes is hampered by a high proportion of repetitive DNA, which makes the assembly of short sequence reads difficult. This is also the case in meadow fescue (Festuca pratensis), which is known for good abiotic stress resistance and has been used in intergeneric hybridization with ryegrasses (Lolium spp.) to produce Festulolium cultivars. In this work, we describe a new approach to analyze the large genome of meadow fescue, which involves the reduction of sample complexity without compromising information content. This is achieved by dissecting the genome to smaller parts: individual chromosomes and groups of chromosomes. As the first step, we flow sorted chromosome 4F and sequenced it by Illumina with approximately 50× coverage. This provided, to our knowledge, the first insight into the composition of the fescue genome, enabled the construction of the virtual gene order of the chromosome, and facilitated detailed comparative analysis with the sequenced genomes of rice (Oryza sativa), Brachypodium distachyon, sorghum (Sorghum bicolor), and barley (Hordeum vulgare). Using GenomeZipper, we were able to confirm the collinearity of chromosome 4F with barley chromosome 4H and the long arm of chromosome 5H. Several new tandem repeats were identified and physically mapped using fluorescence in situ hybridization. They were found as robust cytogenetic markers for karyotyping of meadow fescue and ryegrass species and their hybrids. The ability to purify chromosome 4F opens the way for more efficient analysis of genomic loci on this chromosome underlying important traits, including freezing tolerance. Our results confirm that next-generation sequencing of flow-sorted chromosomes enables an overview of chromosome structure and evolution at a resolution never achieved before.
- MeSH
- chromozomy rostlin genetika MeSH
- Festuca genetika MeSH
- genom rostlinný genetika MeSH
- genomika metody MeSH
- hybridizace in situ fluorescenční MeSH
- ječmen (rod) genetika MeSH
- karyotypizace metody MeSH
- mapování chromozomů MeSH
- molekulární sekvence - údaje MeSH
- pořadí genů MeSH
- reprodukovatelnost výsledků MeSH
- rýže (rod) MeSH
- sekvenční analýza DNA metody MeSH
- Sorghum genetika MeSH
- Southernův blotting MeSH
- syntenie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Satellite DNA sequences consist of tandemly arranged repetitive units up to thousands nucleotides long in head-to-tail orientation. The evolutionary processes by which satellites arise and evolve include unequal crossing over, gene conversion, transposition and extra chromosomal circular DNA formation. Large blocks of satellite DNA are often observed in heterochromatic regions of chromosomes and are a typical component of centromeric and telomeric regions. Satellite-rich loci may show specific banding patterns and facilitate chromosome identification and analysis of structural chromosome changes. Unlike many other genomes, nuclear genomes of banana (Musa spp.) are poor in satellite DNA and the information on this class of DNA remains limited. The banana cultivars are seed sterile clones originating mostly from natural intra-specific crosses within M. acuminata (A genome) and inter-specific crosses between M. acuminata and M. balbisiana (B genome). Previous studies revealed the closely related nature of the A and B genomes, including similarities in repetitive DNA. In this study we focused on two main banana DNA satellites, which were previously identified in silico. Their genomic organization and molecular diversity was analyzed in a set of nineteen Musa accessions, including representatives of A, B and S (M. schizocarpa) genomes and their inter-specific hybrids. The two DNA satellites showed a high level of sequence conservation within, and a high homology between Musa species. FISH with probes for the satellite DNA sequences, rRNA genes and a single-copy BAC clone 2G17 resulted in characteristic chromosome banding patterns in M. acuminata and M. balbisiana which may aid in determining genomic constitution in interspecific hybrids. In addition to improving the knowledge on Musa satellite DNA, our study increases the number of cytogenetic markers and the number of individual chromosomes, which can be identified in Musa.
- MeSH
- banánovník genetika MeSH
- chromozomy rostlin MeSH
- diploidie MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genom rostlinný * MeSH
- mapování chromozomů MeSH
- molekulární sekvence - údaje MeSH
- rostlinné geny MeSH
- satelitní DNA * MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- satelitní DNA * MeSH
BACKGROUND: Bananas and plantains (Musa spp.) are grown in more than a hundred tropical and subtropical countries and provide staple food for hundreds of millions of people. They are seed-sterile crops propagated clonally and this makes them vulnerable to a rapid spread of devastating diseases and at the same time hampers breeding improved cultivars. Although the socio-economic importance of bananas and plantains cannot be overestimated, they remain outside the focus of major research programs. This slows down the study of nuclear genome and the development of molecular tools to facilitate banana improvement. RESULTS: In this work, we report on the first thorough characterization of the repeat component of the banana (M. acuminata cv. 'Calcutta 4') genome. Analysis of almost 100 Mb of sequence data (0.15× genome coverage) permitted partial sequence reconstruction and characterization of repetitive DNA, making up about 30% of the genome. The results showed that the banana repeats are predominantly made of various types of Ty1/copia and Ty3/gypsy retroelements representing 16 and 7% of the genome respectively. On the other hand, DNA transposons were found to be rare. In addition to new families of transposable elements, two new satellite repeats were discovered and found useful as cytogenetic markers. To help in banana sequence annotation, a specific Musa repeat database was created, and its utility was demonstrated by analyzing the repeat composition of 62 genomic BAC clones. CONCLUSION: A low-depth 454 sequencing of banana nuclear genome provided the largest amount of DNA sequence data available until now for Musa and permitted reconstruction of most of the major types of DNA repeats. The information obtained in this study improves the knowledge of the long-range organization of banana chromosomes, and provides sequence resources needed for repeat masking and annotation during the Musa genome sequencing project. It also provides sequence data for isolation of DNA markers to be used in genetic diversity studies and in marker-assisted selection.
- MeSH
- banánovník genetika MeSH
- DNA rostlinná genetika MeSH
- genom rostlinný * MeSH
- mikrosatelitní repetice * MeSH
- retroelementy * MeSH
- sekvenční analýza DNA MeSH
- transpozibilní elementy DNA * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- retroelementy * MeSH
- transpozibilní elementy DNA * MeSH