Nejvíce citovaný článek - PubMed ID 18425578
Nano-ecotoxicology is extensively debated and nanomaterial surface reactivity is an emerging topic. Iron oxide nanoparticles are widely applied, with organic or inorganic coatings for stabilizing their suspensions. Surface active maghemite nanoparticles (SAMNs) are the unique example of naked iron oxide displaying high colloidal and structural stability in water and chemical reactivity. The colloidal behavior of SAMNs was studied as a function of the medium salinity and protocols of acute and chronic toxicity on Daphnia magna were consequently adapted. SAMN distribution into the crustacean, intake/depletion rates and swimming performances were evaluated. No sign of toxicity was detected in two model organisms from the first trophic level (P. subcapitata and L. minor). In D. magna, acute EC50 values of SAMN was assessed, while no sub-lethal effects were observed and the accumulation of SAMNs in the gut appeared as the sole cause of mortality. Fast depuration and absence of delayed effects indicated no retention of SAMNs within the organism. In spite of negligible toxicity on D. magna adults, SAMN surface reactivity was responsible of membrane bursting and lethality on embryos. The present study offers a contribution to the nascent knowledge concerning the impact of nanoparticle surface reactivity on biological interfaces.
- MeSH
- analýza přežití MeSH
- biotest MeSH
- chemické látky znečišťující vodu toxicita MeSH
- Daphnia účinky léků fyziologie MeSH
- embryo nesavčí účinky léků fyziologie MeSH
- kovové nanočástice toxicita MeSH
- lokomoce účinky léků MeSH
- železité sloučeniny toxicita MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chemické látky znečišťující vodu MeSH
- ferric oxide MeSH Prohlížeč
- železité sloučeniny MeSH
In recent years, iron-based nanoparticles (FeNPs) have been successfully used in environmental remediation and water treatment. This study examined ecotoxicity of two FeNPs produced by green tea extract (smGT, GTFe) and their ability to degrade malachite green (MG). Their physicochemical properties were assessed using transmission electron microscopy, X-ray powder diffraction, dynamic light scattering, and transmission Mössbauer spectroscopy. Using a battery of ecotoxicological bioassays, we determined toxicity for nine different organisms, including bacteria, cyanobacterium, algae, plants, and crustaceans. GTFe, amorphous complex of Fe(II, III) ions and polyphenols from green tea extract, proved low capacity to degrade MG and was toxic to all tested organisms. Superparamagnetic iron oxide NPs (smGT) derived from GTFe, showed no toxic effect on most of the tested organisms up to a concentration of 1g/L, except for algae and cyanobacterium and removed 93 % MG at concentration 125 mg Fe/L after 60 minutes. The procedure described in this paper generates new superparamagnetic iron oxide NPs from existing and toxic GTFe, which are nontoxic and has degradative potential for organic compounds. These findings suggest low ecotoxicological risks and suitability of this green-synthesized FeNPs for environmental remediation purposes.
- Klíčová slova
- Ecotoxicity, Green tea, Iron nanoparticles, Malachite green, Remediation,
- Publikační typ
- časopisecké články MeSH