Most cited article - PubMed ID 18925774
Stochastic Liouville equations for coherent multidimensional spectroscopy of excitons
Spectral and dynamical properties of molecular donor-acceptor systems strongly depend on the steric arrangement of the constituents with exciton coupling J as a key control parameter. In the present work we study two peri-arylene based dyads with orthogonal and parallel transition dipoles for donor and acceptor moieties, respectively. We show that the anharmonic multi-well character of the orthogonal dyad's intramolecular potential explains findings from both stationary and time-resolved absorption experiments. While for a parallel dyad, standard quantum chemical estimates of J at 0 K are in good agreement with experimental observations, J becomes vanishingly small for the orthogonal dyad, in contrast to its ultrafast experimental transfer times. This discrepancy is not resolved even by accounting for harmonic fluctuations along normal coordinates. We resolve this problem by supplementing quantum chemical approaches with dynamical sampling of fluctuating geometries. In contrast to the moderate Gaussian fluctuations of J for the parallel dyad, fluctuations for the orthogonal dyad are found to follow non-Gaussian statistics leading to significantly higher effective J in good agreement with experimental observations. In effort to apply a unified framework for treating the dynamics of optical coherence and excitonic populations of both dyads, we employ a vibronic approach treating electronic and selected vibrational degrees on an equal footing. This vibronic model is used to model absorption and fluorescence spectra as well as donor-acceptor transport dynamics and covers the more traditional categories of Förster and Redfield transport as limiting cases.
- Keywords
- Förster transport, MD/QC, perylene dyads, ultrafast energy transfer, vibronic transport,
- Publication type
- Journal Article MeSH
Center line slope (CLS) analysis in 2D infrared spectroscopy has been extensively used to extract frequency-frequency correlation functions of vibrational transitions. We apply this concept to 2D electronic spectroscopy, where CLS is a measure of electronic gap fluctuations. The two domains, infrared and electronic, possess differences: In the infrared, the frequency fluctuations are classical, often slow and Gaussian. In contrast, electronic spectra are subject to fast spectral diffusion and affected by underdamped vibrational wavepackets in addition to Stokes shift. All these effects result in non-Gaussian peak profiles. Here, we extend CLS-analysis beyond Gaussian line shapes and test the developed methodology on a solvated molecule, zinc phthalocyanine. We find that CLS facilitates the interpretation of 2D electronic spectra by reducing their complexity to one dimension. In this way, CLS provides a highly sensitive measure of model parameters describing electronic-vibrational and electronic-solvent interaction.
- Publication type
- Journal Article MeSH
We demonstrate how stochastic transitions between molecular configurations with opposite senses of chirality may be probed by 2D optical signals with specific pulse polarization configurations. The third-order optical response of molecular dimers (such as biphenyls) with dynamical axial chirality is calculated to order of k(2) in the wavevector of light. Spectroscopic signatures of equilibrium chirality fluctuations are predicted for three dynamical models (Ornstein-Uhlenbeck, two-state jump, and diffusion in double well) of the dihedral angle that controls the chirality.
- MeSH
- Biphenyl Compounds chemistry MeSH
- Dimerization MeSH
- Molecular Dynamics Simulation MeSH
- Spectrum Analysis methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Biphenyl Compounds MeSH
- biphenyl MeSH Browser
The coherent third order optical response of molecular aggregates with fluctuating frequencies, couplings, and transition dipole moments is studied. We derived stochastic nonlinear exciton equations (SNEEs) by combining the quasiparticle picture of excitons with the path integral over stochastic bath paths described by the stochastic Liouville equations. Coherent two-dimensional (2D) spectra are calculated for a tetramer model system whose transition dipole orientations undergo two-state stochastic jumps on an arbitrary timescale. Correspondence between domains of ordered dipoles, which determine the exciton coherence length and the absorption peaks, is established. Signatures of domain coherence length fluctuations are observed in the cross peak dynamics of the 2D spectra in specific pulse polarization configurations.
- MeSH
- Color MeSH
- Electrons * MeSH
- Markov Chains MeSH
- Optical Phenomena * MeSH
- Spectrum Analysis * MeSH
- Stochastic Processes MeSH
- Models, Theoretical MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH