Nejvíce citovaný článek - PubMed ID 19209024
Fat grafting, a key regenerative medicine technique, often requires repeat procedures due to high-fat reabsorption and volume loss. Addressing this, a novel drug delivery system uniquely combines a thermosensitive, FDA-approved hydrogel (itaconic acid-modified PLGA-PEG-PLGA copolymer) with FGF2-STAB, a stable fibroblast growth factor 2 with a 21-day stability, far exceeding a few hours of wild-type FGF2's stability. Additionally, the growth factor was encapsulated in "green" liposomes prepared via the Mozafari method, ensuring pH protection. The system, characterized by first-order FGF2-STAB release, employs green chemistry for biocompatibility, bioactivity, and eco-friendliness. The liposomes, with diameters of 85.73 ± 3.85 nm and 68.6 ± 2.2% encapsulation efficiency, allowed controlled FGF2-STAB release from the hydrogel compared to the unencapsulated FGF2-STAB. Yet, the protein compromised the carrier's hydrolytic stability. Prior tests were conducted on model proteins human albumin (efficiency 80.8 ± 3.2%) and lysozyme (efficiency 81.0 ± 2.7%). This injectable thermosensitive system could advance reconstructive medicine and cosmetic procedures.
- MeSH
- fibroblastový růstový faktor 2 * MeSH
- hydrogely chemie MeSH
- lidé MeSH
- liposomy * MeSH
- nosiče léků chemie MeSH
- polyethylenglykoly chemie MeSH
- polyglactin 910 chemie MeSH
- systémy cílené aplikace léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fibroblastový růstový faktor 2 * MeSH
- hydrogely MeSH
- liposomy * MeSH
- nosiče léků MeSH
- poly(lactic-glycolic acid)-poly(ethyleneglycol) copolymer MeSH Prohlížeč
- polyethylene glycol-poly(lactide-co-glycolide) MeSH Prohlížeč
- polyethylenglykoly MeSH
- polyglactin 910 MeSH
Aqueous solutions of some polymers exhibit a lower critical solution temperature (LCST); that is, they form phase-separated aggregates when heated above a threshold temperature. Such polymers found many promising (bio)medical applications, including in situ thermogelling with controlled drug release, polymer-supported radiotherapy (brachytherapy), immunotherapy, and wound dressing, among others. Yet, despite the extensive research on medicinal applications of thermoresponsive polymers, their biodistribution and fate after administration remained unknown. Thus, herein, they studied the pharmacokinetics of four different thermoresponsive polyacrylamides after intramuscular administration in mice. In vivo, these thermoresponsive polymers formed depots that subsequently dissolved with a two-phase kinetics (depot maturation, slow redissolution) with half-lives 2 weeks to 5 months, as depot vitrification prolonged their half-lives. Additionally, the decrease of TCP of a polymer solution increased the density of the intramuscular depot. Moreover, they detected secondary polymer depots in the kidneys and liver; these secondary depots also followed two-phase kinetics (depot maturation and slow dissolution), with half-lives 8 to 38 days (kidneys) and 15 to 22 days (liver). Overall, these findings may be used to tailor the properties of thermoresponsive polymers to meet the demands of their medicinal applications. Their methods may become a benchmark for future studies of polymer biodistribution.
- Klíčová slova
- LCST, biodistribution, poly(2,2-difluoroethyl)acrylamide, poly(N,N-diethylacrylamide), poly(N-acryloylpyrolidine), poly(N-isopropylacrylamide), polyacrylamide, rational polymer design,
- MeSH
- myši MeSH
- polymery * MeSH
- teplota MeSH
- tkáňová distribuce MeSH
- uvolňování léčiv MeSH
- voda * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- polymery * MeSH
- voda * MeSH