Most cited article - PubMed ID 19326201
Discrimination and genetic diversity of Wheat dwarf virus in the Czech Republic
Wheat dwarf virus (WDV) is one of the most important pathogens of cereal crops worldwide. To understand the molecular mechanism of resistance, here we investigated the comparative transcriptome of wheat genotypes with different levels of resistance (Svitava and Fengyou 3) and susceptibility (Akteur) to WDV. We found a significantly higher number of differentially expressed transcripts (DETs) in the susceptible genotype than in the resistant one (e.g., Svitava). The number of downregulated transcripts was also higher in the susceptible genotype than in the resistant one (Svitava) and the opposite was true for the upregulated transcripts. Further functional analysis of gene ontology (GO) enrichment identified a total of 114 GO terms for the DETs. Of these, 64 biological processes, 28 cellular components and 22 molecular function GO terms were significantly enriched. A few of these genes appear to have a specific expression pattern related to resistance or susceptibility to WDV infection. Validation of the expression pattern by RT-qPCR showed that glycosyltransferase was significantly downregulated in the susceptible genotype compared to the resistant genotypes after WDV infection, while CYCLIN-T1-3, a regulator of CDK kinases (cyclin-dependent kinase), was upregulated. On the other hand, the expression pattern of the transcription factor (TF) MYB (TraesCS4B02G174600.2; myeloblastosis domain of transcription factor) was downregulated by WDV infection in the resistant genotypes compared to the susceptible genotype, while a large number of TFs belonging to 54 TF families were differentially expressed due to WDV infection. In addition, two transcripts (TraesCS7A02G341400.1 and TraesCS3B02G239900.1) were upregulated with uncharacterised proteins involved in transport and regulation of cell growth, respectively. Altogether, our findings showed a clear gene expression profile associated with resistance or susceptibility of wheat to WDV. In future studies, we will explore the regulatory network within the same experiment context. This knowledge will broaden not only the future for the development of virus-resistant wheat genotypes but also the future of genetic improvement of cereals for resilience and WDV-resistance breeding.
- Keywords
- RNA-seq, WDV, genotype, resistance, transcriptome, virus, wheat,
- MeSH
- Geminiviridae MeSH
- Genotype MeSH
- Humans MeSH
- Plant Diseases genetics MeSH
- Triticum * genetics MeSH
- Plant Breeding MeSH
- Transcriptome * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Although many genetic manipulations of crops providing biofortified or safer food have been done, the acceptance of biotechnology crops still remains limited. We report on a transgenic barley expressing the multi-functional protein osmotin that improves plant defense under stress conditions. METHODS: An Agrobacterium-mediated technique was used to transform immature embryos of the spring barley cultivar Golden Promise. Transgenic barley plants of the T0 and T1 generation were evaluated by molecular methods. Transgenic barley tolerance to stress was determined by chlorophyll, total protein, malondialdehyde and ascorbate peroxidase content. Methanol extracts of i) Fusarium oxysporum infected or ii) salt-stressed plants, were characterized by their acute toxicity effect on human dermal fibroblasts (HDF), genotoxicity and affection of biodiversity interactions, which was tested through monitoring barley natural virus pathogen-host interactions-the BYDV and WDV viruses transmitted to the plants by aphids and leafhoppers. RESULTS: Transgenic plants maintained the same level of chlorophyll and protein, which significantly declined in wild-type barley under the same stressful conditions. Salt stress evoked higher ascorbate peroxidase level and correspondingly less malondialdehyde. Osmotin expressing barley extracts exhibited a lower cytotoxicity effect of statistical significance than that of wild-type plants under both types of stress tested on human dermal fibroblasts. Extract of Fusarium oxysporum infected transgenic barley was not able to damage DNA in the Comet assay, which is in opposite to control plants. Moreover, this particular barley did not affect the local biodiversity. CONCLUSION: Our findings provide a new perspective that could help to evaluate the safety of products from genetically modified crops.
- MeSH
- Food Safety * MeSH
- Adaptation, Biological MeSH
- Ectopic Gene Expression * MeSH
- Stress, Physiological genetics MeSH
- Plants, Genetically Modified MeSH
- Host-Pathogen Interactions genetics MeSH
- Hordeum genetics MeSH
- Humans MeSH
- Recombinant Proteins * MeSH
- Plant Proteins genetics MeSH
- Nicotiana genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Recombinant Proteins * MeSH
- Plant Proteins MeSH
A rapid method for detection, discrimination and quantification of wheat and barley strains of wheat dwarf virus (WDV) was successfully developed. The sensitivity of quantification of the wheat and barley strains of WDV ranged from an average of 1.2 × 10(7)-1.2 × 10(2) and from an average of 1.4 × 10(7)-1.4 × 10(4) copies of viral genome, respectively. These standard serial dilutions were applied to plant and vector tissues for virus titer calculations. Both strains of WDV were clearly discriminated by specific probes and melting curve analysis. Both TaqMan(®) and SYBR(®) Green technologies provided accurate and reliable methods for monitoring, detection, discrimination, and quantification of WDV.
- MeSH
- Geminiviridae classification genetics isolation & purification MeSH
- Hordeum virology MeSH
- Real-Time Polymerase Chain Reaction methods MeSH
- Plant Diseases virology MeSH
- Triticum virology MeSH
- Sensitivity and Specificity MeSH
- Viral Load methods MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH