Most cited article - PubMed ID 19381471
Implication of Dichomitus squalens manganese-dependent peroxidase in dye decolorization and cooperation of the enzyme with laccase
White-rot fungi that are efficient lignin degraders responsible for its turnover in nature have appeared twice in the center of biotechnological research - first, when the lignin degradation process started being systematically investigated and major enzyme activities and mechanisms involved were described, and second, when the huge remediation potential of these organisms was established. Originally, Phanerochaete chrysosporium became a model organism, characterized by a secondary metabolism regulatory pattern triggered by nutrient (mostly nitrogen) limitation. Last decade brought evidence of more varied regulatory patterns in white-rot fungi when ligninolytic enzymes were also abundantly synthesized under conditions of nitrogen sufficiency. Gradually, research was focused on other species, among them Irpex lacteus showing a remarkable pollutant toxicity resistance and biodegradation efficiency. Systematic research has built up knowledge of biochemistry and biotechnological applicability of this fungus, stressing the need to critically summarize and estimate these scattered data. The review attempts to evaluate the information on I. lacteus focusing on various enzyme activities and bioremediation of organopollutants in water and soil environments, with the aim of mediating this knowledge to a broader microbiological audience.
- MeSH
- Basidiomycota enzymology genetics metabolism MeSH
- Biodegradation, Environmental MeSH
- Biotechnology * MeSH
- Fungal Proteins genetics metabolism MeSH
- Environmental Pollutants metabolism MeSH
- Lignin metabolism MeSH
- Gene Expression Regulation, Fungal MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Fungal Proteins MeSH
- Environmental Pollutants MeSH
- Lignin MeSH
Thirty wood-rotting basidiomycetes, most of them causing white rot in wood, were isolated from fruiting bodies growing on decaying wood from the Sierra de Ayllón (Spain). The fungi were identified on the basis of their morphological characteristics and compared for their ability to decolorize Reactive Black 5 and Reactive Blue 38 (as model of azo and phthalocyanine type dyes, respectively) at 75 and 150 mg/L. Only eighteen fungal strains were able to grow on agar plates in the presence of the dyes and only three species (Calocera cornea, Lopharia spadicea, Polyporus alveolaris) decolorized efficiently both dyes at both concentrations. The ligninolytic activities, involved in decolorization dyes (laccases, lignin peroxidases, Mn-oxidizing peroxidases), were followed in glucose basal medium in the presence of enzyme inducers. The results indicate a high variability of the ligninolytic system within white-rot basidiomycetes. These fungal species and their enzymes can represent new alternatives for the study of new biological systems to degrade aromatic compounds causing environmental problems.
- MeSH
- Coloring Agents metabolism MeSH
- Basidiomycota classification enzymology isolation & purification metabolism MeSH
- Biodegradation, Environmental MeSH
- Wood microbiology MeSH
- Fungal Proteins metabolism MeSH
- Phylogeny MeSH
- Laccase metabolism MeSH
- Peroxidases metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Coloring Agents MeSH
- Fungal Proteins MeSH
- Laccase MeSH
- lignin peroxidase MeSH Browser
- Peroxidases MeSH