Most cited article - PubMed ID 19404598
Irresistible bouquet of death--how are burying beetles (Coleoptera: Silphidae: Nicrophorus) attracted by carcasses
Army ants provide nourishment to a large variety of animals. This includes birds that feed on animals flushed out by army ant raids, symbiotic arthropods that consume the ants' prey or their brood, and other arthropods that scavenge on army ant refuse deposits. The latter have not received much attention, and the few published studies lack detailed species identifications. Here we provide a first systematic inventory of the beetle fauna associated with refuse deposits of Eciton army ants, with a focus on Eciton burchellii. We collected 8364 adult beetles, 511 larvae, and 24 eggs from 34 deposits at La Selva Biological Station, Costa Rica. We used a combination of DNA barcoding and morphology to identify a subset of 436 specimens to species level. The samples included several new species, and we here formally describe two water scavenger beetles (Hydrophilidae). Refuse deposits harbored a diverse beetle fauna. The identified subset consisted of 91 beetle species from 12 families, with rove beetles being the most abundant and diverse visitors. Of the 85 species found with E. burchellii, 50 species were collected from only one or two refuse deposits. Conversely, seven species were found in 10 or more refuse deposits, indicating a certain level of habitat specialization. We matched adults and immatures for 22 beetle species via DNA barcodes, demonstrating that army ant middens also serve as a beetle nursery. The present survey highlights the significant ecological function of army ants as promoters of biodiversity and their status as keystone species in tropical rainforests.
- Keywords
- Coleoptera, DNA barcoding, army ant, biodiversity, scavenger, tropical rainforest,
- Publication type
- Journal Article MeSH
Integrative taxonomy of Diamesus Hope, 1840 (Coleoptera: Silphinae) is presented. Adults of D. bimaculatus Portevin, 1914 (endemic to Taiwan) and D. osculans (Vigors, 1825) (widely distributed from northern India to Australia) are redescribed, keyed and figured, including characters of the male and female genitalia of both species. Variation in elytral maculation in D. osculans is discussed and illustrated. The absence of diagnostic differences of D. osculans var. reductus Pic, 1917 from D. osculans is discussed, and the former name is confirmed as a junior subjective synonym of D. osculans. Types of all three names available were studied; a lectotype and paralectotypes are designated for the name D. osculans var. bimaculatus Portevin, 1914. Molecular phylogenetic analysis confirms the genus Diamesus is sister group to the genus Necrodes Leach, 1815, and D. osculans and D. bimaculatus are two, well supported clades. Detailed data on the distribution of D. bimaculatus and D. osculans are presented and mapped. Species distribution models for both species were created and interpreted. Diamesus osculans is reported for the first time from India: Uttarakhand, China: Anhui, Hainan, Hunan, Jiangxi, Shaanxi and Zhejiang Provinces, and Australia: Victoria; it is also recently confirmed from Taiwan, being sympatric in distribution there with D. bimaculatus. Available data on the ecology and seasonality of both species of Diamesus are also discussed.
- MeSH
- Animal Structures MeSH
- Coleoptera * genetics MeSH
- Phylogeny MeSH
- Animal Distribution MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- China MeSH
- Victoria MeSH
Chemical cues, such as volatile organic compounds (VOCs), are often essential for insects to locate food. Relative to the volume of studies on the role of VOCs in insect-plant relationships, the role of VOCs emitted by dung and carrion in mediating the behavior of insect decomposers is understudied. Such relationships may provide a mechanistic understanding of the temporal axis of community assembly processes in decomposing insect communities. We focused on the temporal succession of volatiles released by cow dung pats and the potential influence on dung-inhabiting insects. Using gas chromatography/mass spectrometry we identified and quantified VOCs released from dung 1-h, and 1, 2 3, 5, and 7 d-old. We then related changes in VOCs to successional patterns of dung-inhabiting beetles and flies. We detected 54 VOCs which could be assigned to two successional groups, with chemical turnover in dung changing around day 2. The early successional group consisted primarily of aliphatic alcohols and phenols, and the late one of aliphatic esters, nitrogen- and sulfur-bearing compounds. Flies were predominately associated with the early successional group, mainly with 1-butanol. Beetles were associated predominately with the late-successional group, mainly with dimethyl trisulfide. This association between insect and chemical successional patterns supports the idea that habitat filtering drives the community assembly of dung-inhabiting insects on an aging resource. Moreover, the affinity of both insect groups to specific VOC groups provides a mechanistic explanation for the predictability of successional patterns found in dung-inhabiting insect communities.
- Keywords
- Diptera, Dung beetles, Environmental filtering, Ephemeral habitats, Temporal segregations,
- MeSH
- Alcohols analysis metabolism MeSH
- Biological Evolution MeSH
- Coleoptera MeSH
- Time Factors MeSH
- Behavior, Animal MeSH
- Smell MeSH
- Diptera MeSH
- Nitrogen analysis metabolism MeSH
- Esters analysis metabolism MeSH
- Feces chemistry MeSH
- Phenols analysis metabolism MeSH
- Animal Communication MeSH
- Odorants MeSH
- Gas Chromatography-Mass Spectrometry MeSH
- Food Preferences physiology MeSH
- Sulfur analysis metabolism MeSH
- Cattle MeSH
- Volatile Organic Compounds analysis metabolism MeSH
- Animals MeSH
- Check Tag
- Cattle MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Alcohols MeSH
- Nitrogen MeSH
- Esters MeSH
- Phenols MeSH
- Sulfur MeSH
- Volatile Organic Compounds MeSH