Most cited article - PubMed ID 19543770
Comparison of age-dependent quantitative changes in the male labial gland secretion of Bombus terrestris and Bombus lucorum
Fatty acyl reductases (FARs) are involved in the biosynthesis of fatty alcohols that serve a range of biological roles. Insects typically harbor numerous FAR gene family members. While some FARs are involved in pheromone biosynthesis, the biological significance of the large number of FARs in insect genomes remains unclear. Using bumble bee (Bombini) FAR expression analysis and functional characterization, hymenopteran FAR gene tree reconstruction, and inspection of transposable elements (TEs) in the genomic environment of FARs, we uncovered a massive expansion of the FAR gene family in Hymenoptera, presumably facilitated by TEs. The expansion occurred in the common ancestor of bumble bees and stingless bees (Meliponini). We found that bumble bee FARs from the expanded FAR-A ortholog group contribute to the species-specific pheromone composition. Our results indicate that expansion and functional diversification of the FAR gene family played a key role in the evolution of pheromone communication in Hymenoptera.
- Keywords
- Bombus lapidarius, Bombus lucorum, Bombus terrestris, evolutionary biology, fatty acyl reductases, gene family evolution, transposable elements,
- MeSH
- Aldehyde Oxidoreductases genetics metabolism MeSH
- Pheromones biosynthesis genetics metabolism MeSH
- Phylogeny * MeSH
- Hymenoptera enzymology MeSH
- Fatty Alcohols metabolism MeSH
- Amino Acid Sequence genetics MeSH
- DNA Transposable Elements MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Aldehyde Oxidoreductases MeSH
- Pheromones MeSH
- Fatty Alcohols MeSH
- DNA Transposable Elements MeSH
Sex-specific chemical secretions have been widely used as diagnostic characters in chemotaxonomy. The taxonomically confused group of bumblebees has reaped the benefit of this approach through the analyses of cephalic labial gland secretions (CLGS). Most of currently available CLGS descriptions concern species from the West-Palearctic region but few from the New World. Here, the CLGS of four East-Palearctic species Bombus deuteronymus, B. filchnerae, B. humilis, and B. exil (subgenus Thoracobombus) are analysed. Our results show high levels of variability in the major compounds in B. exil. In contrast, we describe a low differentiation in CLGS compounds between B. filchnerae and its phylogenetically closely related taxon B. muscorum. Moreover, the chemical profiles of B. filchnerae and B. muscorum are characterized by low concentrations of the C16 component, which is found in higher concentrations in the other Thoracobombus species. This raises the possibility that courtship behavior as well as environmental constraints could affect the role of the bumblebee males' CLGS.
- Keywords
- Cephalic glands, Courtship behavior, Pheromones, Pollinator, Social insect,
- MeSH
- Principal Component Analysis MeSH
- Exocrine Glands chemistry metabolism MeSH
- Gas Chromatography-Mass Spectrometry MeSH
- Sex Attractants analysis chemistry MeSH
- Bees chemistry metabolism MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Sex Attractants MeSH
Insects' fat bodies are responsible for nutrient storage and for a significant part of intermediary metabolism. Thus, it can be expected that the structure and content of the fat body will adaptively change, if an insect is going through different life stages. Bumblebee queens belong to such insects as they dramatically change their physiology several times over their lives in relation to their solitary overwintering, independent colony foundation stage, and during the colony life-cycle ending in the senescent stage. Here, we report on changes in the ultrastructure and lipid composition of the peripheral fat body of Bombus terrestris queens in relation to seasonal changes in the queens' activity. Six life stages are defined and evaluated in particular: pharate, callow, before and after hibernation, egg-laying, and senescence. Transmission electron microscopy revealed that the fat body contained two main cell types-adipocytes and oenocytes. Only adipocytes reveal important changes related to the life phase, and mostly the ration between inclusion and cytoplasm volume varies among particular stages. Both electron microscopy and chemical analyses of lipids highlighted seasonal variability in the quantity of the stored lipids, which peaked prior to hibernation. Triacylglycerols appeared to be the main energy source during hibernation, while the amount of glycogen before and after hibernation remained unchanged. In addition, we observed that the representation of some fatty acids within the triacylglycerols change during the queen's life. Last but not least, we show that fat body cell membranes do not undergo substantial changes concerning phospholipid composition in relation to overwintering. This finding supports the hypothesis that the cold-adaptation strategy of bumblebee queens is more likely to be based on polyol accumulation than on the restructuring of lipid membranes.
- MeSH
- Cell Membrane metabolism MeSH
- Adaptation, Physiological physiology MeSH
- Hibernation MeSH
- Fatty Acids metabolism MeSH
- Seasons * MeSH
- Fat Body metabolism MeSH
- Bees physiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Fatty Acids MeSH
Triacylglycerols (TGs) stored in the fat bodies of bumblebee males have a species-specific composition. The striking structural similarities between TG fatty acids (FAs) and components of the male marking pheromone in certain species led to the hypothesis that FAs may serve as precursors in pheromone biosynthesis. Here, we analysed TGs from B. ruderatus, B. bohemicus, and B. campestris. Nonadec-9-ene and icos-15-en-1-ol are the main components of B. ruderatus labial gland secretion, forming up to 92% of the gland extract. The corresponding icos-11-enic and icos-15-enic acids were found in TGs at levels higher than usual for bumblebee species. We found similar relationships in B. campestris and B. bohemicus. These results suggest that FAs might be precursors of aliphatic compounds in the male pheromones. Furthermore, we report for the first time the pheromone structure of B. ruderatus males.
- MeSH
- Species Specificity MeSH
- Pheromones chemistry metabolism MeSH
- Lipids chemistry MeSH
- Fatty Acids chemistry MeSH
- Sex Attractants chemistry MeSH
- Bees chemistry physiology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Pheromones MeSH
- Lipids MeSH
- Fatty Acids MeSH
- Sex Attractants MeSH
BACKGROUND: In addition to their general role in the hydrolysis of storage lipids, bumblebee lipases can participate in the biosynthesis of fatty acids that serve as precursors of pheromones used for sexual communication. RESULTS: We studied the temporal dynamics of lipolytic activity in crude extracts from the cephalic part of Bombus terrestris labial glands. Extracts from 3-day-old males displayed the highest lipolytic activity. The highest lipase gene expression level was observed in freshly emerged bumblebees, and both gene expression and lipase activity were lower in bumblebees older than 3 days. Lipase was purified from labial glands, further characterized and named as BT-1. The B. terrestris orthologue shares 88% sequence identity with B. impatiens lipase HA. The molecular weight of B. terrestris lipase BT-1 was approximately 30 kDa, the pH optimum was 8.3, and the temperature optimum was 50°C. Lipase BT-1 showed a notable preference for C8-C10 p-nitrophenyl esters, with the highest activity toward p-nitrophenyl caprylate (C8). The Michaelis constant (Km) and maximum reaction rate (Vmax) for p-nitrophenyl laurate hydrolysis were Km = 0.0011 mM and Vmax = 0.15 U/mg. CONCLUSION: This is the first report describing neutral lipase from the labial gland of B. terrestris. Our findings help increase understanding of its possible function in the labial gland.
- MeSH
- Gene Expression genetics MeSH
- Pheromones genetics metabolism MeSH
- Hydrolysis MeSH
- Hydrogen-Ion Concentration MeSH
- Lipase genetics metabolism MeSH
- Fatty Acids genetics metabolism MeSH
- Substrate Specificity MeSH
- Bees genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Pheromones MeSH
- Lipase MeSH
- Fatty Acids MeSH
The age-dependent changes in the composition of triacylglycerols (TAG) in the fat bodies of bumblebee males were studied using HPLC/MS. Two related species (Bombus terrestris and B. lucorum) were compared, with the age of the males being 0-30 days. The total amount of TAG in B. lucorum was about 2.7 times higher than that in B. terrestris for all of the ages studied. One to three-day-old males had the highest content of TAG in their fat bodies (1.6-2.3 mg/individual in B. terrestris and 3.8-4.2 mg/individual in B. lucorum). The analytical data show different patterns in both species. The qualitative composition of fatty acids in TAG was similar, but the mean relative abundance between B. terrestris and B. lucorum differed: 14:0, 7 and 14%; 16:0, 20 and 44%; 18:3, 62 and 23%; 18:1, 3 and 8%, respectively (the data is based on a GC/MS integration). A statistical evaluation of the dynamic changes in the TAG composition revealed that in B. terrestris different age classes were well separated according to their TAG composition while in B. lucorum the TAG did not change substantially during the male's life. The TAG analyses provide more precise information on the differences between the classes studied than the FA composition alone.
- MeSH
- Principal Component Analysis MeSH
- Mass Spectrometry MeSH
- Fatty Acids chemistry metabolism MeSH
- Multivariate Analysis MeSH
- Triglycerides chemistry isolation & purification metabolism MeSH
- Fat Body chemistry metabolism MeSH
- Bees metabolism MeSH
- Age Factors MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Fatty Acids MeSH
- Triglycerides MeSH