Most cited article - PubMed ID 19577637
Comparative analysis of Salmonella enterica serovar Enteritidis mutants with a vaccine potential
Salmonella Typhimurium is an enteric pathogen that causes acute and chronic infections in humans and animals. One-week-old germ-free piglets were orally colonized/infected with the Salmonella Typhimurium LT2 strain or its isogenic rough ΔrfaL, ΔrfaG or ΔrfaC mutants with exactly defined lipopolysaccharide (LPS) defects. After 24 h, the piglets were euthanized and the colonization of the small intestine, translocations into the mesenteric lymph nodes, liver, spleen, lungs, and bacteremia, along with changes in the ileum histology, and transcription levels of the tight junction proteins claudin-1, claudin-2, and occludin were all assessed. Additionally, transcription levels of IL-8, TNF-α, and IL-10 in the terminal ileum, and their local and systemic protein levels were evaluated. Wild-type Salmonella Typhimurium showed the highest translocation, histopathological changes, upregulation of claudins and downregulation of occludin, transcription of the cytokines, intestinal IL-8 and TNF-α levels, and systemic TNF-α and IL-10 levels. Depending on the extent of the incompleteness of the LPS, the levels of the respective elements decreased, or no changes were observed at all in the piglets colonized/infected with Δrfa mutants. Intestinal IL-10 and systemic IL-8 levels were not detected in any piglet groups. This study provided foundational data on the gnotobiotic piglet response to colonization/infection with the exactly defined rough Salmonella Typhimurium LT2 isogenic mutants.
- Keywords
- Salmonella Typhimurium, cytokines, germ-free piglet, gnotobiotic, lipopolysaccharide, tight junction proteins, Δrfa mutant,
- MeSH
- Cytokines immunology MeSH
- Germ-Free Life * MeSH
- Liver microbiology MeSH
- Lipopolysaccharides toxicity MeSH
- Lymph Nodes microbiology MeSH
- Mutation MeSH
- Lung microbiology MeSH
- Swine MeSH
- Salmonella typhimurium genetics physiology MeSH
- Salmonella Infections immunology microbiology pathology MeSH
- Spleen microbiology MeSH
- Intestine, Small immunology microbiology pathology MeSH
- Virulence * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cytokines MeSH
- Lipopolysaccharides MeSH
Poultry is the most frequent reservoir of non-typhoid Salmonella enterica for humans. Understanding the interactions between chickens and S. enterica is therefore important for vaccine design and subsequent decrease in the incidence of human salmonellosis. In this study we therefore characterized the interactions between chickens and phoP, aroA, SPI1 and SPI2 mutants of S. Enteritidis. First we tested the response of HD11 chicken macrophage-like cell line to S. Enteritidis infection monitoring the transcription of 36 genes related to immune response. All the mutants and the wild type strain induced inflammatory signaling in the HD11 cell line though the response to SPI1 mutant infection was different from the rest of the mutants. When newly hatched chickens were inoculated, the phoP as well as the SPI1 mutant did not induce an expression of any of the tested genes in the cecum. Despite this, such chickens were protected against challenge with wild-type S. Enteritidis. On the other hand, inoculation of chickens with the aroA or SPI2 mutant induced expression of 27 and 18 genes, respectively, including genes encoding immunoglobulins. Challenge of chickens inoculated with these two mutants resulted in repeated induction of 11 and 13 tested genes, respectively, including the genes encoding immunoglobulins. In conclusion, SPI1 and phoP mutants induced protective immunity without inducing an inflammatory response and antibody production. Inoculation of chickens with the SPI2 and aroA mutants also led to protective immunity but was associated with inflammation and antibody production. The differences in interaction between the mutants and chicken host can be used for a more detailed understanding of the chicken immune system.
- MeSH
- Vaccines, Attenuated immunology MeSH
- Cell Line MeSH
- Cecum immunology microbiology MeSH
- Chickens MeSH
- Macrophages immunology MeSH
- Mutation MeSH
- Poultry Diseases immunology microbiology MeSH
- Salmonella enteritidis * genetics immunology MeSH
- Salmonella Infections, Animal immunology microbiology MeSH
- Salmonella Vaccines immunology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Vaccines, Attenuated MeSH
- Salmonella Vaccines MeSH
Salmonella vaccines used in poultry in the EU are based on attenuated strains of either Salmonella serovar Enteritidis or Typhimurium which results in a decrease in S. Enteritidis and S. Typhimurium but may allow other Salmonella serovars to fill an empty ecological niche. In this study we were therefore interested in the early interactions of chicken immune system with S. Infantis compared to S. Enteritidis and S. Typhimurium, and a role of O-antigen in these interactions. To reach this aim, we orally infected newly hatched chickens with 7 wild type strains of Salmonella serovars Enteritidis, Typhimurium and Infantis as well as with their rfaL mutants and characterized the early Salmonella-chicken interactions. Inflammation was characterized in the cecum 4 days post-infection by measuring expression of 43 different genes. All wild type strains stimulated a greater inflammatory response than any of the rfaL mutants. However, there were large differences in chicken responses to different wild type strains not reflecting their serovar classification. The initial interaction between newly-hatched chickens and Salmonella was found to be dependent on the presence of O-antigen but not on its structure, i.e. not on serovar classification. In addition, we observed that the expression of calbindin or aquaporin 8 in the cecum did not change if inflammatory gene expression remained within a 10 fold fluctuation, indicating the buffering capacity of the cecum, preserving normal gut functions even in the presence of minor inflammatory stimuli.
- MeSH
- Aquaporins metabolism MeSH
- Cecum immunology metabolism MeSH
- Calbindins metabolism MeSH
- Chickens immunology MeSH
- Poultry Diseases immunology metabolism MeSH
- O Antigens metabolism MeSH
- Immunity, Innate MeSH
- Salmonella enterica immunology metabolism MeSH
- Salmonella Infections, Animal immunology metabolism MeSH
- Serogroup MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Aquaporins MeSH
- aquaporin 8 MeSH Browser
- Calbindins MeSH
- O Antigens MeSH
The prevalence of Salmonella enterica serovar Enteritidis is gradually decreasing in poultry flocks in the EU, which may result in the demand for a vaccine that allows for the differentiation of vaccinated flocks from those infected by wild-type S. Enteritidis. In this study, we therefore constructed a (Salmonella Pathogenicity Island 1) SPI1-lon mutant with or without fliC encoding for S. Enteritidis flagellin. The combination of SPI1-lon mutations resulted in attenuated but immunogenic mutant suitable for oral vaccination of poultry. In addition, the vaccination of chickens with the SPI1-lon-fliC mutant enabled the serological differentiation of vaccinated and infected chickens. The absence of fliC therefore did not affect the immunogenicity of the vaccine strain and allowed for serological differentiation of the vaccinated chickens. The SPI1-lon-fliC mutant is therefore a suitable marker vaccine strain for oral vaccination of poultry.
- MeSH
- Bacterial Proteins genetics immunology MeSH
- Flagellin genetics immunology MeSH
- Chickens MeSH
- Mutation * MeSH
- Poultry Diseases prevention & control MeSH
- Protease La genetics immunology MeSH
- Antibodies, Bacterial immunology MeSH
- Salmonella enteritidis genetics growth & development immunology ultrastructure MeSH
- Salmonella Infections, Animal prevention & control MeSH
- Salmonella Vaccines administration & dosage immunology MeSH
- Vaccination veterinary MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Flagellin MeSH
- Protease La MeSH
- Antibodies, Bacterial MeSH
- Salmonella Vaccines MeSH
- Spi1 protein, Salmonella MeSH Browser
Genes localized at Salmonella pathogenicity island-1 (SPI-1) are involved in Salmonella enterica invasion of host non-professional phagocytes. Interestingly, in macrophages, SPI-1-encoded proteins, in addition to invasion, induce cell death via activation of caspase-1 which also cleaves proIL-1β and proIL-18, precursors of 2 proinflammatory cytokines. In this study we were therefore interested in whether SPI-1-encoded type III secretion system (T3SS) may influence proinflammatory response of macrophages. To test this hypothesis, we infected primary porcine alveolar macrophages with wild-type S. Typhimurium and S. Enteritidis and their isogenic SPI-1 deletion mutants. ΔSPI1 mutants of both serovars invaded approx. 5 times less efficiently than the wild-type strains and despite this, macrophages responded to the infection with ΔSPI1 mutants by increased expression of proinflammatory cytokines IL-1β, IL-8, TNFα, IL-23α and GM-CSF. Identical macrophage responses to that induced by the ΔSPI1 mutants were also observed to the infection with sipB but not the sipA mutant. The hilA mutant exhibited an intermediate phenotype between the ΔSPI1 mutant and the wild-type S. Enteritidis. Our results showed that the SPI-1-encoded T3SS is required not only for cell invasion but in macrophages also for the suppression of early proinflammatory cytokine expression.
- MeSH
- Macrophages, Alveolar immunology metabolism MeSH
- Cytokines genetics metabolism MeSH
- Genomic Islands * MeSH
- Swine Diseases immunology microbiology MeSH
- Swine MeSH
- Salmonella enteritidis genetics MeSH
- Salmonella typhimurium genetics metabolism MeSH
- Salmonella Infections, Animal immunology microbiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cytokines MeSH
BACKGROUND: In this study we were interested in the colonisation and early immune response of Balb/C mice to infection with Salmonella Enteritidis and isogenic pathogenicity island free mutants. RESULTS: The virulence of S. Enteritidis for Balb/C mice was exclusively dependent on intact SPI-2. Infections with any of the mutants harbouring SPI-2 (including the mutant in which we left only SPI-2 but removed SPI-1, SPI-3, SPI-4 and SPI-5) resulted in fatalities, liver injures and NK cell depletion from the spleen. The infection was of minimal influence on counts of splenic CD4 CD8 T lymphocytes and gammadelta T-lymphocytes although a reduced ability of splenic lymphocytes to respond to non-specific mitogens indicated general immunosuppression in mice infected with SPI-2 positive S. Enteritidis mutants. Further investigations showed that NK cells were depleted also in blood but not in the caecal lamina propria. However, NK cell depletion was not directly associated with the presence of SPI-2 and was rather an indicator of virulence or avirulence of a particular mutant because the depletion was not observed in mice infected with other attenuated mutants such as lon and rfaL. CONCLUSIONS: The virulence of S. Enteritidis for Balb/C mice is exclusively dependent on the presence of SPI-2 in its genome, and a major hallmark of the infection in terms of early changes in lymphocyte populations is the depletion of NK cells in spleen and blood. The decrease of NK cells in circulation can be used as a marker of attenuation of S. Enteritidis mutants for Balb/C mice.
- MeSH
- Antigens, CD19 immunology MeSH
- CD3 Complex immunology MeSH
- Bacterial Proteins genetics immunology MeSH
- Killer Cells, Natural immunology MeSH
- Cytokines immunology MeSH
- Histocytochemistry MeSH
- Lymphocytes cytology immunology MeSH
- Membrane Proteins genetics immunology MeSH
- Disease Models, Animal MeSH
- Mice, Inbred BALB C MeSH
- Mice MeSH
- Statistics, Nonparametric MeSH
- Cell Proliferation MeSH
- Salmonella enteritidis genetics pathogenicity MeSH
- Salmonella Infections, Animal immunology microbiology MeSH
- Virulence MeSH
- Bacterial Shedding MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antigens, CD19 MeSH
- CD3 Complex MeSH
- Bacterial Proteins MeSH
- Cytokines MeSH
- Membrane Proteins MeSH
- SPI-2 protein, Salmonella MeSH Browser
- Spi1 protein, Salmonella MeSH Browser
BACKGROUND: Salmonella is a highly successful parasite of reptiles, birds and mammals. Its ability to infect and colonise such a broad range of hosts coincided with the introduction of new genetic determinants, among them 5 major pathogenicity islands (SPI1-5), into the Salmonella genome. However, only limited information is available on how each of these pathogenicity islands influences the ability of Salmonella to infect chickens. In this study, we therefore constructed Salmonella Enteritidis mutants with each SPI deleted separately, with single individual SPIs (i.e. with the remaining four deleted) and a mutant with all 5 SPIs deleted, and assessed their virulence in one-day-old chickens, together with the innate immune response of this host. RESULTS: The mutant lacking all 5 major SPIs was still capable of colonising the caecum while colonisation of the liver and spleen was dependent on the presence of both SPI-1 and SPI-2. In contrast, the absence of SPI-3, SPI-4 or SPI-5 individually did not influence virulence of S. Enteritidis for chickens, but collectively they contributed to the colonisation of the spleen. Proinflammatory signalling and heterophil infiltration was dependent on intact SPI-1 only and not on other SPIs. CONCLUSIONS: SPI-1 and SPI-2 are the two most important pathogenicity islands of Salmonella Enteritidis required for the colonisation of systemic sites in chickens.
- MeSH
- RNA, Bacterial genetics MeSH
- Genomic Islands * MeSH
- Chickens immunology microbiology MeSH
- Poultry Diseases immunology microbiology MeSH
- Immunity, Innate MeSH
- Salmonella enteritidis genetics pathogenicity MeSH
- Salmonella Infections, Animal immunology microbiology MeSH
- Sequence Deletion MeSH
- Virulence MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
- Names of Substances
- RNA, Bacterial MeSH