Nejvíce citovaný článek - PubMed ID 19660988
Paricalcitol (19-nor-1,25-dihydroxyvitamin D2) and calcitriol (1,25-dihydroxyvitamin D3) exert potent immunomodulatory effects on dendritic cells and inhibit induction of antigen-specific T cells
Tolerogenic dendritic cells (tolDCs) are explored as a promising standalone or combination therapy in type 1 diabetes (T1D). The therapeutic application of tolDCs, including in human trials, has been tested also in other autoimmune diseases, however, T1D displays some unique features. In addition, unlike in several disease-induced animal models of autoimmune diseases, the prevalent animal model for T1D, the NOD mouse, develops diabetes spontaneously. This review compares evidence of various tolDCs approaches obtained from animal (mainly NOD) models of T1D with a focus on parameters of this cell-based therapy such as protocols of tolDC preparation, antigen-specific vs. unspecific approaches, doses of tolDCs and/or autoantigens, application schemes, application routes, the migration of tolDCs as well as their preventive, early pre-onset intervention or curative effects. This review also discusses perspectives of tolDC therapy and areas of preclinical research that are in need of better clarification in animal models in a quest for effective and optimal tolDC therapies of T1D in humans.
- Klíčová slova
- NOD mouse, animal models, cell therapy, protocol optimization, tolerogenic dendritic cells, type 1 diabetes,
- MeSH
- dendritické buňky imunologie transplantace MeSH
- diabetes mellitus 1. typu imunologie MeSH
- imunologická tolerance imunologie MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední NOD MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
UNLABELLED: Tolerogenic DCs (tolDCs) are being researched as a promising intervention strategy also in autoimmune diseases including type 1 diabetes (T1D). T1D is a T-cell-mediated, organ-specific disease with several well-defined and rather specific autoantigens, i.e., proinsulin, insulin, glutamic acid decarboxylase 65 (GAD65), that have been used in animal as well as human intervention trials in attempts to achieve a more efficient, specific immunotherapy. In this study, we have tested tolerogenic DCs for their effectiveness to prevent adoptive transfer of diabetes by diabetogenic splenocytes into non-obese diabetes (NOD)-severe combined immunodeficiency (NOD-SCID) recipients. While i.p. application of tolDCs prepared from bone marrow of prediabetic NOD mice by vitamin D2 and dexamethasone significantly reduced diabetes transfer into the NOD-SCID females, this effect was completely abolished when tolDCs were loaded with the mouse recombinant GAD65, but also with a control protein-ovalbumin (OVA). The effect was not dependent on the presence of serum in the tolDC culture. Similar results were observed in NOD mice. Removal of possible bystander antigen-presenting cells within the diabetogenic splenocytes by negative magnetic sorting of T cells did not alter this surprising effect. Tolerogenic DCs loaded with an immunodominant mouse GAD65 peptide also displayed diminished diabetes-preventive effect. Tolerogenic DCs were characterized by surface maturation markers (CD40, CD80, CD86, MHC II) and the lipopolysaccharide stability test. Data from alloreactive T cell proliferation and cytokine induction assays (IFN-γ) did not reveal the differences observed in the diabetes incidence. Migration of tolDCs, tolDCs-GAD65 and tolDCs-OVA to spleen, mesenteric- and pancreatic lymph nodes displayed similar, mucosal pattern with highest accumulation in pancreatic lymph nodes present up to 9 days after the i.p. APPLICATION: These data document that mechanisms by which tolDCs operate in vivo require much better understanding for improving efficacy of this promising cell therapy, especially in the presence of an antigen, e.g., GAD65.
- Klíčová slova
- autoantigen, cell therapy, dendritic cells, glutamic acid decarboxylase 65, non-obese diabetes mice, non-obese diabetes-severe combined immunodeficiency mouse, tolerogenic, type 1 diabetes,
- MeSH
- autoantigeny imunologie MeSH
- dendritické buňky imunologie MeSH
- diabetes mellitus 1. typu imunologie MeSH
- glutamát dekarboxyláza imunologie MeSH
- imunologická tolerance imunologie MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši inbrední NOD MeSH
- myši SCID MeSH
- myši MeSH
- převzatá imunita MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- autoantigeny MeSH
- glutamát dekarboxyláza MeSH
- glutamate decarboxylase 2 MeSH Prohlížeč
Tolerogenic dendritic cells (tDCs) may offer an intervention therapy in autoimmune diseases or transplantation. Stable immaturity and tolerogenic function of tDCs after encountering inflammatory environment are prerequisite for positive outcome of immunotherapy. However, the signaling pathways regulating their stable tolerogenic properties are largely unknown. In this study, we demonstrated that human monocyte-derived tDCs established by using paricalcitol (analogue of vitamin D2), dexamethasone and monophosphoryl lipid A exposed for 24h to LPS, cytokine cocktail, polyI:C or CD40L preserved reduced expression of co-stimulatory molecules, increased levels of inhibitory molecules ILT-3, PDL-1 and TIM-3, increased TLR-2, increased secretion of IL-10 and TGF-β, reduced IL-12 and TNF-α secretion and reduced T cell stimulatory capacity. tDCs further induced IL-10-producing T regulatory cells that suppressed the proliferation of responder T cells. In the inflammatory environment, tDCs maintained up-regulated indoleamine 2, 3 dioxygenase but abrogated IκB-α phosphorylation and reduced transcriptional activity of p65/RelA, RelB and c-Rel NF-κB subunits except p50. Mechanistically, p38 MAPK, ERK1/2, mTOR, STAT3 and mTOR-dependent glycolysis regulated expression of ILT-3, PDL-1 and CD86, secretion of IL-10 and T cell stimulatory capacity of tDCs in the inflammatory environment. Stability of tDCs in the inflammatory environment is thus regulated by multiple signaling pathways.
- Klíčová slova
- Immunology and Microbiology Section, activation pathways, glycolysis, immune response, immunity, immunoregulation, stability, tolerogenic DCs,
- MeSH
- buněčná diferenciace fyziologie MeSH
- dendritické buňky účinky léků metabolismus MeSH
- dexamethason farmakologie MeSH
- ergokalciferoly farmakologie MeSH
- glykolýza účinky léků MeSH
- kultivované buňky MeSH
- lidé MeSH
- mitogenem aktivované proteinkinasy metabolismus MeSH
- NF-kappa B metabolismus MeSH
- signální transdukce MeSH
- TOR serin-threoninkinasy metabolismus MeSH
- transkripční faktor STAT3 metabolismus MeSH
- zánět metabolismus patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dexamethason MeSH
- ergokalciferoly MeSH
- mitogenem aktivované proteinkinasy MeSH
- MTOR protein, human MeSH Prohlížeč
- NF-kappa B MeSH
- paricalcitol MeSH Prohlížeč
- STAT3 protein, human MeSH Prohlížeč
- TOR serin-threoninkinasy MeSH
- transkripční faktor STAT3 MeSH