Most cited article - PubMed ID 19760767
Detection of residual B precursor lymphoblastic leukemia by uniform gating flow cytometry
Recently, we described B-cell precursor acute lymphoblastic leukemia (BCP-ALL) subtype with early switch to the monocytic lineage and loss of the B-cell immunophenotype, including CD19 expression. Thus far, the genetic background has remained unknown. Among 726 children consecutively diagnosed with BCP-ALL, 8% patients experienced switch detectable by flow cytometry (FC). Using exome and RNA sequencing, switch was found to positively correlate with three different genetic subtypes: PAX5-P80R mutation (5 cases with switch out of 5), rearranged DUX4 (DUX4r; 30 cases of 41) and rearranged ZNF384 (ZNF384r; 4 cases of 10). Expression profiles or phenotypic patterns correlated with genotypes, but within each genotype they could not identify cases who subsequently switched. If switching was not taken into account, the B-cell-oriented FC assessment underestimated the minimal residual disease level. For patients with PAX5-P80R, a discordance between FC-determined and PCR-determined MRD was found on day 15, resulting from a rapid loss of the B-cell phenotype. Discordance on day 33 was observed in all the DUX4r, PAX5-P80R and ZNF384r subtypes. Importantly, despite the substantial phenotypic changes, possibly even challenging the appropriateness of BCP-ALL therapy, the monocytic switch was not associated with a higher incidence of relapse and poorer prognosis in patients undergoing standard ALL treatment.
- MeSH
- PAX5 Transcription Factor genetics MeSH
- Precursor Cell Lymphoblastic Leukemia-Lymphoma * MeSH
- B-Lymphocytes MeSH
- Immunophenotyping MeSH
- Humans MeSH
- Mutation MeSH
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma * diagnosis genetics MeSH
- Neoplasm, Residual MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- PAX5 Transcription Factor MeSH
- PAX5 protein, human MeSH Browser
A fully-standardized EuroFlow 8-color antibody panel and laboratory procedure was stepwise designed to measure minimal residual disease (MRD) in B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) patients with a sensitivity of ≤10-5, comparable to real-time quantitative polymerase chain reaction (RQ-PCR)-based MRD detection via antigen-receptor rearrangements. Leukocyte markers and the corresponding antibodies and fluorochromes were selected based on their contribution in separating BCP-ALL cells from normal/regenerating BCP cells in multidimensional principal component analyses. After 5 multicenter design-test-evaluate-redesign phases with a total of 319 BCP-ALL patients at diagnosis, two 8-color antibody tubes were selected, which allowed separation between normal and malignant BCP cells in 99% of studied patients. These 2 tubes were tested with a new erythrocyte bulk-lysis protocol allowing acquisition of high cell numbers in 377 bone marrow follow-up samples of 178 BCP-ALL patients. Comparison with RQ-PCR-based MRD data showed a clear positive relation between the percentage concordant cases and the number of cells acquired. For those samples with >4 million cells acquired, concordant results were obtained in 93% of samples. Most discordances were clarified upon high-throughput sequencing of antigen-receptor rearrangements and blind multicenter reanalysis of flow cytometric data, resulting in an unprecedented concordance of 98% (97% for samples with MRD < 0.01%). In conclusion, the fully standardized EuroFlow BCP-ALL MRD strategy is applicable in >98% of patients with sensitivities at least similar to RQ-PCR (≤10-5), if sufficient cells (>4 × 106, preferably more) are evaluated.
- MeSH
- Child MeSH
- Adult MeSH
- Gene Rearrangement MeSH
- Infant MeSH
- Real-Time Polymerase Chain Reaction MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Infant, Newborn MeSH
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma diagnosis MeSH
- Child, Preschool MeSH
- Flow Cytometry methods standards MeSH
- Receptors, Antigen, B-Cell genetics MeSH
- Neoplasm, Residual diagnosis MeSH
- Aged MeSH
- Sensitivity and Specificity MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Infant MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Infant, Newborn MeSH
- Child, Preschool MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Receptors, Antigen, B-Cell MeSH
Acute leukemia is a disease pathologically manifested at both genomic and proteomic levels. Molecular genetic technologies are currently widely used in clinical research. In contrast, sensitive and high-throughput proteomic techniques for performing protein analyses in patient samples are still lacking. Here, we used a technology based on size exclusion chromatography followed by immunoprecipitation of target proteins with an antibody bead array (Size Exclusion Chromatography-Microsphere-based Affinity Proteomics, SEC-MAP) to detect hundreds of proteins from a single sample. In addition, we developed semi-automatic bioinformatics tools to adapt this technology for high-content proteomic screening of pediatric acute leukemia patients.To confirm the utility of SEC-MAP in leukemia immunophenotyping, we tested 31 leukemia diagnostic markers in parallel by SEC-MAP and flow cytometry. We identified 28 antibodies suitable for both techniques. Eighteen of them provided excellent quantitative correlation between SEC-MAP and flow cytometry (p< 0.05). Next, SEC-MAP was applied to examine 57 diagnostic samples from patients with acute leukemia. In this assay, we used 632 different antibodies and detected 501 targets. Of those, 47 targets were differentially expressed between at least two of the three acute leukemia subgroups. The CD markers correlated with immunophenotypic categories as expected. From non-CD markers, we found DBN1, PAX5, or PTK2 overexpressed in B-cell precursor acute lymphoblastic leukemias, LAT, SH2D1A, or STAT5A overexpressed in T-cell acute lymphoblastic leukemias, and HCK, GLUD1, or SYK overexpressed in acute myeloid leukemias. In addition, OPAL1 overexpression corresponded to ETV6-RUNX1 chromosomal translocation.In summary, we demonstrated that SEC-MAP technology is a powerful tool for detecting hundreds of proteins in clinical samples obtained from pediatric acute leukemia patients. It provides information about protein size and reveals differences in protein expression between particular leukemia subgroups. Forty-seven of SEC-MAP identified targets were validated by other conventional method in this study.
- MeSH
- Precursor Cell Lymphoblastic Leukemia-Lymphoma diagnosis immunology metabolism MeSH
- Diagnosis, Differential MeSH
- Child MeSH
- Chromatography, Gel methods MeSH
- Immunophenotyping methods MeSH
- Immunoprecipitation MeSH
- Infant MeSH
- Automation, Laboratory MeSH
- Humans MeSH
- Adolescent MeSH
- Cell Line, Tumor MeSH
- Child, Preschool MeSH
- Proteomics methods MeSH
- Antibodies pharmacology MeSH
- Gene Expression Regulation, Leukemic MeSH
- Check Tag
- Child MeSH
- Infant MeSH
- Humans MeSH
- Adolescent MeSH
- Child, Preschool MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antibodies MeSH
Switches from the lymphoid to myeloid lineage during B-cell precursor acute lymphoblastic leukemia (BCP-ALL) treatment are considered rare and thus far have been detected in MLL-rearranged leukemia. Here, we describe a novel BCP-ALL subset, switching BCP-ALL or swALL, which demonstrated monocytosis early during treatment. Despite their monocytic phenotype, 'monocytoids' share immunoreceptor gene rearrangements with leukemic B lymphoblasts. All swALLs demonstrated BCP-ALL with CD2 positivity and no MLL alterations, and the proportion of swALLs cases among BCP-ALLs was unexpectedly high (4%). The upregulation of CEBPα and demethylation of the CEBPA gene were significant in blasts at diagnosis, prior to the time when most of the switching occurs. Intermediate stages between CD14(neg)CD19(pos)CD34(pos) B lymphoblasts and CD14(pos)CD19(neg)CD34(neg) 'monocytoids' were detected, and changes in the expression of PAX5, PU1, M-CSFR, GM-CSFR and other genes accompanied the switch. Alterations in the Ikaros and ERG genes were more frequent in swALL patients; however, both were altered in only a minority of swALLs. Moreover, switching could be recapitulated in vitro and in mouse xenografts. Although children with swALL respond slowly to initial therapy, risk-based ALL therapy appears the treatment of choice for swALL. SwALL shows that transdifferentiating into monocytic lineage is specifically associated with CEBPα changes and CD2 expression.
- MeSH
- CD2 Antigens immunology MeSH
- Cell Lineage MeSH
- Child MeSH
- Immunophenotyping MeSH
- Cohort Studies MeSH
- Humans MeSH
- Adolescent MeSH
- Monocytes pathology MeSH
- Multiplex Polymerase Chain Reaction MeSH
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma immunology pathology MeSH
- Child, Preschool MeSH
- Prognosis MeSH
- Neoplasm, Residual MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Child, Preschool MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Validation Study MeSH
- Names of Substances
- CD2 Antigens MeSH
BACKGROUND: Most minimal residual disease-directed treatment interventions in current treatment protocols for acute lymphoblastic leukemia are based on bone marrow testing, which is a consequence of previous studies showing the superiority of bone marrow over peripheral blood as an investigational material. Those studies typically did not explore the prognostic impact of peripheral blood involvement and lacked samples from very early time points of induction. DESIGN AND METHODS: In this study, we employed real-time quantitative polymerase chain reaction analysis to examine minimal residual disease in 398 pairs of blood and bone marrow follow-up samples taken from 95 children with B-cell precursor acute lymphoblastic leukemia treated with the ALL IC-BFM 2002 protocol. RESULTS: We confirmed the previously published poor correlation between minimal residual disease in blood and marrow at early treatment time points, with levels in bone marrow being higher than in blood in most samples (median 7.9-fold, range 0.04-8,293-fold). A greater involvement of peripheral blood at diagnosis was associated with a higher white blood cell count at diagnosis (P=0.003) and with enlargement of the spleen (P=0.0004) and liver (P=0.05). At day 15, a level of minimal residual disease in blood lower than 10(-4) was associated with an excellent 5-year relapse-free survival in 78 investigated patients (100% versus 69 ± 7%; P=0.0003). Subgroups defined by the level of minimal residual disease in blood at day 15 (high-risk: ≥ 10(-2), intermediate-risk: <10(-2) and ≥ 10(-4), standard-risk: <10(-4)) partially correlated with bone marrow-based stratification described previously, but the risk groups did not match completely. No other time point analyses were predictive of outcome in peripheral blood, except for a weak association at day 8. CONCLUSIONS: Minimal residual disease in peripheral blood at day 15 identified a large group of patients with an excellent prognosis and added prognostic information to the risk stratification based on minimal residual disease at day 33 and week 12.
- MeSH
- Time Factors MeSH
- Child MeSH
- Infant MeSH
- Bone Marrow metabolism pathology MeSH
- Real-Time Polymerase Chain Reaction MeSH
- Humans MeSH
- Adolescent MeSH
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma blood diagnosis drug therapy pathology MeSH
- Child, Preschool MeSH
- Prognosis MeSH
- Antineoplastic Combined Chemotherapy Protocols administration & dosage MeSH
- Neoplasm, Residual MeSH
- Check Tag
- Child MeSH
- Infant MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Child, Preschool MeSH
- Publication type
- Journal Article MeSH
- Clinical Trial MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Mixed phenotype acute leukemia (MPAL) represents a diagnostic and therapeutic dilemma. The European Group for the Immunological Classification of Leukemias (EGIL) scoring system unambiguously defines MPAL expressing aberrant lineage markers. Discussions surrounding it have focused on scoring details, and information is limited regarding its biological, clinical and prognostic significance. The recent World Health Organization classification is simpler and could replace the EGIL scoring system after transformation into unambiguous guidelines. DESIGN AND METHODS: Simple immunophenotypic criteria were used to classify all cases of childhood acute leukemia in order to provide therapy directed against acute lymphoblastic leukemia or acute myeloid leukemia. Prognosis, genotype and immunoglobulin/T-cell receptor gene rearrangement status were analyzed. RESULTS: The incidences of MPAL were 28/582 and 4/107 for children treated with acute lymphoblastic leukemia and acute myeloid leukemia regimens, respectively. In immunophenotypic principal component analysis, MPAL treated as T-cell acute lymphoblastic leukemia clustered between cases of non-mixed T-cell acute lymphoblastic leukemia and acute myeloid leukemia, while other MPAL cases were included in the respective non-mixed B-cell progenitor acute lymphoblastic leukemia or acute myeloid leukemia clusters. Analogously, immunoglobulin/T-cell receptor gene rearrangements followed the expected pattern in patients treated as having acute myeloid leukemia (non-rearranged, 4/4) or as having B-cell progenitor acute lymphoblastic leukemia (rearranged, 20/20), but were missing in 3/5 analyzed cases of MPAL treated as having T-cell acute lymphobastic leukemia. In patients who received acute lymphoblastic leukemia treatment, the 5-year event-free survival of the MPAL cases was worse than that of the non-mixed cases (53+/-10% and 76+/-2% at 5 years, respectively, P=0.0075), with a more pronounced difference among B lineage cases. The small numbers of MPAL cases treated as T-cell acute lymphoblastic leukemia or as acute myeloid leukemia hampered separate statistics. We compared prognosis of all subsets with the prognosis of previously published cohorts. CONCLUSIONS: Simple immunophenotypic criteria are useful for therapy decisions in MPAL. In B lineage leukemia, MPAL confers poorer prognosis. However, our data do not justify a preferential use of current acute myeloid leukemia-based therapy in MPAL.
- MeSH
- Precursor Cell Lymphoblastic Leukemia-Lymphoma diagnosis immunology therapy MeSH
- Leukemia, Myeloid, Acute diagnosis immunology therapy MeSH
- Diagnosis, Differential MeSH
- Child MeSH
- Phenotype * MeSH
- Immunophenotyping * methods MeSH
- Infant MeSH
- Leukemia diagnosis immunology therapy MeSH
- Humans MeSH
- Adolescent MeSH
- Follow-Up Studies MeSH
- Infant, Newborn MeSH
- Child, Preschool MeSH
- Prognosis MeSH
- Receptors, Antigen, T-Cell immunology MeSH
- Check Tag
- Child MeSH
- Infant MeSH
- Humans MeSH
- Adolescent MeSH
- Infant, Newborn MeSH
- Child, Preschool MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
- Names of Substances
- Receptors, Antigen, T-Cell MeSH