Nejvíce citovaný článek - PubMed ID 19784538
Effect of polyunsaturated fatty acids on the reactive oxygen and nitrogen species production by raw 264.7 macrophages
Lipid bi-layered particles known as membrane vesicles (MVs), produced by Gram-positive bacteria are a communication tool throughout the entire bacterial growth. However, the MVs characteristics may vary across all stages of maternal culture growth, leading to inconsistencies in MVs research. This, in turn, hinders their employment as nanocarriers, vaccines and other medical applications. In this study, we aimed to comprehensively characterize MVs derived from Lacticaseibacillus rhamnosus CCM7091 isolated at different growth stages: early exponential (6 h, MV6), late exponential (12 h, MV12) and late stationary phase (48 h, MV48). We observed significant differences in protein content between MV6 and MV48 (data are available via ProteomeXchange with identifier PXD041580), likely contributing to their different immunomodulatory capacities. In vitro analysis demonstrated that MV48 uptake rate by epithelial Caco-2 cells is significantly higher and they stimulate an immune response in murine macrophages RAW 264.7 (elevated production of TNFα, IL-6, IL-10, NO). This correlated with increased expression of lipoteichoic acid (LTA) and enhanced TLR2 signalling in MV48, suggesting that LTA contributes to the immunomodulation. In conclusion, we showed that Lacticaseibacillus rhamnosus CCM7091-derived MVs from the late stationary phase boost the immune response the most effectively, which pre-destines them for therapeutical application as nanocarriers.
- Klíčová slova
- Lacticaseibacillus rhamnosus, TLR2, growth curve, immunomodulation, lipoteichoic acid, membrane vesicles, nanocarriers,
- Publikační typ
- časopisecké články MeSH
PURPOSE: Although beneficial effects of the dietary n-3 docosahexaenoic acid (DHA) or butyrate in colon carcinogenesis have been implicated, the mechanisms of their action are not fully clear. Here, we investigated modulations of composition of individual phospholipid (PL) classes, with a particular emphasis on cardiolipins (CLs), in colon cells treated with DHA, sodium butyrate (NaBt), or their combination (DHA/NaBt), and we evaluated possible associations between lipid changes and cell fate after fatty acid treatment. METHODS: In two distinct human colon cell models, foetal colon (FHC) and adenocarcinoma (HCT-116) cells, we compared patterns and composition of individual PL classes following the fatty acid treatment by HPLC-MS/MS. In parallel, we measured the parameters reflecting cell proliferation, differentiation and death. RESULTS: In FHC cells, NaBt induced primarily differentiation, while co-treatment with DHA shifted their response towards cell death. In contrast, NaBt induced apoptosis in HCT-116 cells, which was not further affected by DHA. DHA was incorporated in all main PL types, increasing their unsaturation, while NaBt did not additionally modulate these effects in either cell model. Nevertheless, we identified an unusually wide range of CL species to be highly increased by NaBt and particularly by DHA/NaBt, and these effects were more pronounced in HCT-116 cells. DHA and DHA/NaBt enhanced levels of high molecular weight and more unsaturated CL species, containing DHA, which was specific for either differentiation or apoptotic responses. CONCLUSIONS: We identified a wide range of CL species in the colon cells which composition was significantly modified after DHA and NaBt treatment. These specific CL modulations might contribute to distinct cellular differentiation or apoptotic responses.
- Klíčová slova
- Apoptosis, Butyrate, Cardiolipins, Colon cancer, Docosahexaenoic acid, Phospholipids,
- MeSH
- apoptóza účinky léků MeSH
- buněčná diferenciace účinky léků MeSH
- fosfolipidy chemie MeSH
- HCT116 buňky MeSH
- kaspasa 3 genetika metabolismus MeSH
- kolon cytologie účinky léků MeSH
- kyselina máselná farmakologie MeSH
- kyseliny dokosahexaenové farmakologie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- proliferace buněk účinky léků MeSH
- tandemová hmotnostní spektrometrie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- CASP3 protein, human MeSH Prohlížeč
- fosfolipidy MeSH
- kaspasa 3 MeSH
- kyselina máselná MeSH
- kyseliny dokosahexaenové MeSH
BACKGROUND: Inflammatory-mediated pathological processes in the endothelium arise as a consequence of the dysregulation of vascular homeostasis. Of particular importance are mediators produced by stimulated monocytes/macrophages inducing activation of endothelial cells (ECs). This is manifested by excessive soluble pro-inflammatory mediator production and cell surface adhesion molecule expression. Nitro-fatty acids are endogenous products of metabolic and inflammatory reactions that display immuno-regulatory potential and may represent a novel therapeutic strategy to treat inflammatory diseases. The purpose of our study was to characterize the effects of nitro-oleic acid (OA-NO2) on inflammatory responses and the endothelial-mesenchymal transition (EndMT) in ECs that is a consequence of the altered healing phase of the immune response. METHODS: The effect of OA-NO2 on inflammatory responses and EndMT was determined in murine macrophages and murine and human ECs using Western blotting, ELISA, immunostaining, and functional assays. RESULTS: OA-NO2 limited the activation of macrophages and ECs by reducing pro-inflammatory cytokine production and adhesion molecule expression through its modulation of STAT, MAPK and NF-κB-regulated signaling. OA-NO2 also decreased transforming growth factor-β-stimulated EndMT and pro-fibrotic phenotype of ECs. These effects are related to the downregulation of Smad2/3. CONCLUSIONS: The study shows the pleiotropic effect of OA-NO2 on regulating EC-macrophage interactions during the immune response and suggests a role for OA-NO2 in the regulation of vascular endothelial immune and fibrotic responses arising during chronic inflammation. GENERAL SIGNIFICANCE: These findings propose the OA-NO2 may be useful as a novel therapeutic agent for treatment of cardiovascular disorders associated with dysregulation of the endothelial immune response.
- Klíčová slova
- Endothelial cells, Endothelial-mesenchymal transition, Macrophages, Nitro-fatty acids, Nitro-oleic acid, Vascular inflammation,
- MeSH
- cévní endotel cytologie účinky léků metabolismus MeSH
- endoteliální buňky účinky léků metabolismus MeSH
- epitelo-mezenchymální tranzice * MeSH
- kyseliny olejové farmakologie MeSH
- lidé MeSH
- makrofágy účinky léků metabolismus MeSH
- MAP kinasový signální systém MeSH
- myši MeSH
- NF-kappa B metabolismus MeSH
- proteiny Smad metabolismus MeSH
- transformující růstový faktor beta farmakologie MeSH
- transkripční faktory STAT metabolismus MeSH
- zánět metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- 10-nitro-oleic acid MeSH Prohlížeč
- kyseliny olejové MeSH
- NF-kappa B MeSH
- proteiny Smad MeSH
- transformující růstový faktor beta MeSH
- transkripční faktory STAT MeSH
Resveratrol-3,5,4'-trihydroxystilbene-possesses antioxidant activities in vitro. It dose-dependently inhibited the generation of peroxyl, hydroxyl, peroxides, and lipid peroxidation products in cell free systems. Oxidative burst of whole human blood stimulated with PMA, fMLP, OpZ, and A23187 was inhibited in a concentration-dependent way, indicating suppression of both receptor and nonreceptor activated chemiluminescence by resveratrol. Results from isolated human neutrophils revealed that resveratrol was active extracellularly as well as intracellularly in inhibiting the generation of reactive oxygen species. Liberation of ATP and analysis of apoptosis showed that in the concentration of 100 μM, resveratrol did not change the viability and integrity of isolated neutrophils. Western blot analysis documented that resveratrol in concentrations of 10 and 100 μM significantly decreased PMA-induced phosphorylation of PKC α/β II. Dose-dependent inhibition of nitrite production and iNOS protein expression in RAW 264.7 cells indicated possible interference of resveratrol with reactive nitrogen radical generation in professional phagocytes. The results suggest that resveratrol represents an effective naturally occurring substance with potent pharmacological effect on oxidative burst of human neutrophils and nitric oxide production by macrophages. It should be further investigated for its pharmacological activity against oxidative stress in ischaemia reperfusion, inflammation, and other pathological conditions, particularly neoplasia.
- MeSH
- buněčné linie MeSH
- dusitany metabolismus MeSH
- fagocyty účinky léků enzymologie metabolismus MeSH
- látky reagující s kyselinou thiobarbiturovou metabolismus MeSH
- lidé MeSH
- luminiscenční měření MeSH
- luminol metabolismus MeSH
- myši MeSH
- neutrofily účinky léků metabolismus MeSH
- peroxidace lipidů účinky léků MeSH
- proteinkinasy metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- respirační vzplanutí účinky léků MeSH
- resveratrol MeSH
- scavengery volných radikálů metabolismus MeSH
- separace buněk MeSH
- stilbeny farmakologie MeSH
- synthasa oxidu dusnatého, typ II metabolismus MeSH
- tetradekanoylforbolacetát farmakologie MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dusitany MeSH
- látky reagující s kyselinou thiobarbiturovou MeSH
- luminol MeSH
- proteinkinasy MeSH
- reaktivní formy kyslíku MeSH
- resveratrol MeSH
- scavengery volných radikálů MeSH
- stilbeny MeSH
- synthasa oxidu dusnatého, typ II MeSH
- tetradekanoylforbolacetát MeSH