Most cited article - PubMed ID 19796704
Resveratrol attenuates lipopolysaccharide-induced hepatitis in D-galactosamine sensitized rats: role of nitric oxide synthase 2 and heme oxygenase-1
BACKGROUND: The complexity of the galaninergic system is still not fully understood, especially under specific pre-existing comorbidities related to metabolic dysfunction. A plant-derived triterpenoid celastrol was demonstrated to exert a complex effect on the galaninergic system and to have hepatoprotective and anti-obesity properties. However, the exact molecular mechanisms responsible for these effects remain unclear. Specifically, there are no data on the impact of celastrol on the heart and liver galaninergic system. Therefore, this study aimed to investigate the effects of celastrol on the galaninergic system expression in the heart and liver of mice suffering from diet-induced obesity and metabolic dysfunction-associated steatotic liver disease and steatohepatitis (MASLD/MASH). METHODS: The male mice C57BL/6J were fed a Western-type high-fat diet for 16 and 20 weeks to induce obesity and MASLD/MASH. Celastrol was administered along with a specific diet for the last 4 weeks to evaluate its impact on the progression of these conditions. Moreover, the inhibitor of sterol regulatory element-binding protein 1/2 (SREBP1/2), fatostatin, was also tested to compare its influence on the galaninergic system with celastrol. RESULTS: The study demonstrates that celastrol treatment was safe and led to a reduction in food and energy intake, body fat and liver weights, and MASLD-to-MASH progression and improved glucose tolerance, serum biochemistry markers, and hepatic lipid peroxidation in mice. Quantitative gene expression originally showed significant regulation of galanin and all three of its receptors (GalR1/2/3) in the heart ventricles and only GalR2 in the liver of obese mice. Celastrol influenced the gene expression of galanin receptors: it downregulated Galr1 in the heart and upregulated Galr2 in the liver and Galr3 in the heart ventricles, potentially affecting energy metabolism, oxidative stress, and inflammation. Fatostatin suppressed gene expression of all the detected members of the galaninergic system in the heart ventricles, depicting the role of SREBP in this process. CONCLUSION: These findings suggest that celastrol may beneficially modulate the galaninergic system under obesity and MASLD-to-MASH progression, indicating its potential as a therapeutic agent for disorders associated with metabolic dysfunction.
- Keywords
- MASH, MASLD, celastrol, fatostatin, galanin receptor, heart, mouse, obesity,
- Publication type
- Journal Article MeSH
The aim of this study was to evaluate therapeutic potential of edaravone in the murine model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE) and to expand the knowledge of its mechanism of action. Edaravone (6 mg/kg/day) was administered intraperitoneally from the onset of clinical symptoms until the end of the experiment (28 days). Disease progression was assessed daily using severity scores. At the peak of the disease, histological analyses, markers of oxidative stress (OS) and parameters of mitochondrial function in the brains and spinal cords (SC) of mice were determined. Gene expression of inducible nitric oxide synthase (iNOS), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1alpha was determined at the end of the experiment. Edaravone treatment ameliorated EAE severity and attenuated inflammation in the SC of the EAE mice, as verified by histological analysis. Moreover, edaravone treatment decreased OS, increased the gene expression of the Nrf2 and HO-1, increased the activity of the mitochondrial complex II/III, reduced the activity of the mitochondrial complex IV and preserved ATP production in the SC of the EAE mice. In conclusion, findings in this study provide additional evidence of edaravone potential for the treatment of multiple sclerosis and expand our knowledge of the mechanism of action of edaravone in the EAE model.
- MeSH
- Edaravone pharmacology MeSH
- Encephalomyelitis, Autoimmune, Experimental * pathology MeSH
- Encephalomyelitis * MeSH
- Gene Expression MeSH
- NF-E2-Related Factor 2 genetics metabolism MeSH
- Heme Oxygenase-1 genetics metabolism MeSH
- Mice MeSH
- Severity of Illness Index MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Edaravone MeSH
- NF-E2-Related Factor 2 MeSH
- Heme Oxygenase-1 MeSH
This article is directed at highlighting the involvement of the endogenous stress sensor SIRT1 (silent information regulator T1) as a possible factor involved in hepatoprotection. The selective SIRT1 modulators whether activators (STACs) or inhibitors are being tried experimentally and clinically. We discuss the modulation of SIRT1 on cytoprotection or even cytotoxicity in the liver chemically injured by hepatotoxic agents in rats, to shed light on the crosstalk between SIRT1 and its modulators. A combination of D-galactosamine and lipopolysaccharide (D-GalN/LPS) downregulated SIRT1 expression, while SIRT1 activators, SRT1720, resveratrol, and quercetin, upregulated SIRT1 and alleviated D-GalN/LPS-induced acute hepatotoxicity. Liver injury markers exhibited an inverse relationship with SIRT1 expression. However, under subchronic hepatotoxicity, quercetin decreased the significant increase in SIRT1 expression to lower levels which are still higher than normal ones and mitigated the liver-damaging effects of carbon tetrachloride. Each of these STACs was hepatoprotective and returned the conventional antioxidant enzymes to the baseline. Polyphenols tend to fine-tune SIRT1 expression towards normal in the liver of intoxicated rats in both acute and subchronic studies. Together, all these events give an impression that the cytoprotective effects of SIRT1 are exhibited within a definite range of expression. The catalytic activity of SIRT1 is important in the hepatoprotective effects of polyphenols where SIRT1 inhibitors block and the allosteric SIRT1 activators mimic the hepatoprotective effects of polyphenols. Our findings indicate that the pharmacologic modulation of SIRT1 could represent both an important move in alleviating hepatic insults and a future major step in the treatment of xenobiotic-induced hepatotoxicity.
- MeSH
- Chemical and Drug Induced Liver Injury drug therapy enzymology MeSH
- Humans MeSH
- Polyphenols pharmacology MeSH
- Sirtuin 1 antagonists & inhibitors metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Polyphenols MeSH
- Sirtuin 1 MeSH