Nejvíce citovaný článek - PubMed ID 20850178
Omsk haemorrhagic fever
Ticks are important human and animal parasites and vectors of many infectious disease agents. Control of tick activity is an effective tool to reduce the risk of contracting tick-transmitted diseases. The castor bean tick (Ixodes ricinus) is the most common tick species in Europe. It is also a vector of the causative agents of Lyme borreliosis and tick-borne encephalitis, which are two of the most important arthropod-borne diseases in Europe. In recent years, increases in tick activity and incidence of tick-borne diseases have been observed in many European countries. These increases are linked to many ecological and anthropogenic factors such as landscape management, climate change, animal migration, and increased popularity of outdoor activities or changes in land usage. Tick activity is driven by many biotic and abiotic factors, some of which can be effectively managed to decrease risk of tick bites. In the USA, recommendations for landscape management, tick host control, and tick chemical control are well-defined for the applied purpose of reducing tick presence on private property. In Europe, where fewer studies have assessed tick management strategies, the similarity in ecological factors influencing vector presence suggests that approaches that work in USA may also be applicable. In this article we review key factors driving the tick exposure risk in Europe to select those most conducive to management for decreased tick-associated risk.
- Klíčová slova
- Ixodes ricinus, tick, tick management, tick-borne diseases,
- MeSH
- hodnocení rizik MeSH
- klíště * patogenita MeSH
- klíšťová encefalitida * terapie MeSH
- lidé MeSH
- lymeská nemoc * terapie MeSH
- nemoci přenášené klíšťaty * terapie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Geografické názvy
- Evropa MeSH
Kyasanur Forest disease virus (KFDV) is a highly pathogenic tick-borne flavivirus enzootic to India. In humans, KFDV causes a severe febrile disease. In some infected individuals, hemorrhagic manifestations, such as bleeding from the nose and gums and gastrointestinal bleeding with hematemesis and/or blood in the stool, have been reported. However, the mechanisms underlying these hemorrhagic complications remain unknown, and there is no information about the specific target cells for KFDV. We investigated the interaction of KFDV with vascular endothelial cells (ECs) and monocyte-derived dendritic cells (moDCs), which are key targets for several other hemorrhagic viruses. Here, we report that ECs are permissive to KFDV infection, which leads to their activation, as demonstrated by the upregulation of E-selectin, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 at the mRNA and protein levels. Increased expression of these adhesive molecules correlated with increased leukocyte adhesion. Infected ECs upregulated the expression of interleukin (IL)-6 but not IL-8. Additionally, moDCs were permissive to KFDV infection, leading to increased release of IL-6 and tumor necrosis factor-α. Supernatants from KFDV-infected moDCs caused EC activation, as measured by leukocyte adhesion. The results indicate that ECs and moDCs can be targets for KFDV and that both direct and indirect mechanisms can contribute to EC activation.
- MeSH
- CD antigeny genetika imunologie MeSH
- cévní buněčněadhezivní molekula-1 genetika imunologie MeSH
- dendritické buňky imunologie virologie MeSH
- endoteliální buňky imunologie virologie MeSH
- interleukin-6 genetika imunologie MeSH
- interleukin-8 genetika imunologie MeSH
- kadheriny genetika imunologie MeSH
- kultivované buňky MeSH
- lidé MeSH
- messenger RNA MeSH
- mezibuněčná adhezivní molekula-1 genetika imunologie MeSH
- nemoc kyasanurského lesa imunologie MeSH
- TNF-alfa genetika imunologie MeSH
- viry klíšťové encefalitidy imunologie patogenita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- CD antigeny MeSH
- CDH1 protein, human MeSH Prohlížeč
- cévní buněčněadhezivní molekula-1 MeSH
- CXCL8 protein, human MeSH Prohlížeč
- ICAM1 protein, human MeSH Prohlížeč
- IL6 protein, human MeSH Prohlížeč
- interleukin-6 MeSH
- interleukin-8 MeSH
- kadheriny MeSH
- messenger RNA MeSH
- mezibuněčná adhezivní molekula-1 MeSH
- TNF-alfa MeSH
Dermacentor reticulatus is a hard tick species with extraordinary biological features. It has a high reproduction rate, a rapid developmental cycle, and is also able to overcome years of unfavourable conditions. Dermacentor reticulatus can survive under water for several months and is cold-hardy even compared to other tick species. It has a wide host range: over 60 different wild and domesticated hosts are known for the three active developmental stages. Its high adaptiveness gives an edge to this tick species as shown by new data on the emergence and establishment of D. reticulatus populations throughout Europe. The tick has been the research focus of a growing number of scientists, physicians and veterinarians. Within the Web of Science database, more than a fifth of the over 700 items published on this species between 1897 and 2015 appeared in the last three years (2013-2015). Here we attempt to synthesize current knowledge on the systematics, ecology, geographical distribution and recent spread of the species and to highlight the great spectrum of possible veterinary and public health threats it poses. Canine babesiosis caused by Babesia canis is a severe leading canine vector-borne disease in many endemic areas. Although less frequently than Ixodes ricinus, D. reticulatus adults bite humans and transmit several Rickettsia spp., Omsk haemorrhagic fever virus or Tick-borne encephalitis virus. We have not solely collected and reviewed the latest and fundamental scientific papers available in primary databases but also widened our scope to books, theses, conference papers and specialists colleagues' experience where needed. Besides the dominant literature available in English, we also tried to access scientific literature in German, Russian and eastern European languages as well. We hope to inspire future research projects that are necessary to understand the basic life-cycle and ecology of this vector in order to understand and prevent disease threats. We conclude that although great strides have been made in our knowledge of the eco-epidemiology of this species, several gaps still need to be filled with basic research, targeting possible reservoir and vector roles and the key factors resulting in the observed geographical spread of D. reticulatus.
- Klíčová slova
- Asia, Babesia canis, Dermacentor reticulatus, Ecology, Epidemiology, Europe, Geographical distribution, Host associations, Omsk haemorrhagic fever virus, Spread,
- MeSH
- arachnida jako vektory klasifikace mikrobiologie parazitologie fyziologie MeSH
- Babesia izolace a purifikace MeSH
- babezióza epidemiologie přenos MeSH
- demografie MeSH
- Dermacentor klasifikace mikrobiologie parazitologie fyziologie MeSH
- ekologie MeSH
- hostitelská specificita MeSH
- infestace klíšťaty epidemiologie parazitologie MeSH
- klasifikace MeSH
- lidé MeSH
- nemoci přenášené klíšťaty epidemiologie mikrobiologie parazitologie přenos MeSH
- nemoci psů epidemiologie mikrobiologie parazitologie přenos MeSH
- omská hemoragická horečka epidemiologie přenos virologie MeSH
- psi MeSH
- stadia vývoje MeSH
- veřejné zdravotnictví MeSH
- viry klíšťové encefalitidy izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Geografické názvy
- Asie epidemiologie MeSH
- Evropa epidemiologie MeSH