Nejvíce citovaný článek - PubMed ID 21193219
Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching
The application of zero-valent iron particles (ZVI) for the treatment of heavily polluted environment and its biological effects have been studied for at least two decades. Still, information on the impact on bacterial metabolic pathways is lacking. This study describes the effect of microscale and nanoscale ZVI (mZVI and nZVI) on the abundance of different metabolic pathways in freshwater bacterial communities. The metabolic pathways were inferred from metabolism modelling based on 16S rRNA gene sequence data using paprica pipeline. The nZVI changed the abundance of numerous metabolic pathways compared to a less influencing mZVI. We identified the 50 most affected pathways, where 31 were related to degradation, 17 to biosynthesis, and 2 to detoxification. The linkage between pathways was two times higher in nZVI samples compared to mZVI, and was specifically higher considering the arsenate detoxification II pathway. Limnohabitans and Roseiflexus were linked to the same pathways in both nZVI and mZVI. The prediction of metabolic pathways increases our knowledge of the impacts of nZVI and mZVI on freshwater bacterioplankton.
Zero-valent iron nanoparticles (nZVI) treated by reduced sulfur compounds (i.e., sulfidated nZVI, S-nZVI) have attracted increased attention as promising materials for environmental remediation. While the preparation of S-nZVI and its reactions with various groundwater contaminants such as trichloroethylene (TCE) were already a subject of several studies, nanoparticle synthesis procedures investigated so far were suited mainly for laboratory-scale preparation with only a limited possibility of easy and cost-effective large-scale production and FeS shell property control. This study presents a novel approach for synthesizing S-nZVI using commercially available nZVI particles that are treated with sodium sulfide in a concentrated slurry. This leads to S-nZVI particles that do not contain hazardous boron residues and can be easily prepared off-site. The resulting S-nZVI exhibits a core-shell structure where zero-valent iron is the dominant phase in the core, while the shell contains mostly amorphous iron sulfides. The average FeS shell thickness can be controlled by the applied sulfide concentration. Up to a 12-fold increase in the TCE removal and a 7-fold increase in the electron efficiency were observed upon amending nZVI with sulfide. Although the FeS shell thickness correlated with surface-area-normalized TCE removal rates, sulfidation negatively impacted the particle surface area, resulting in an optimal FeS shell thickness of approximately 7.3 nm. This corresponded to a particle S/Fe mass ratio of 0.0195. At all sulfide doses, the TCE degradation products were only fully dechlorinated hydrocarbons. Moreover, a nearly 100% chlorine balance was found at the end of the experiments, further confirming complete TCE degradation and the absence of chlorinated transformation products. The newly synthesized S-nZVI particles thus represent a promising remedial agent applicable at sites contaminated with TCE.
- Klíčová slova
- dechlorination, nanoparticles, selectivity, sulfidation, trichloroethylene, zero-valent iron,
- Publikační typ
- časopisecké články MeSH