Nejvíce citovaný článek - PubMed ID 21227977
Directional preference may enhance hunting accuracy in foraging foxes
It was shown earlier that dogs, when selecting between two dishes with snacks placed in front of them, left and right, prefer to turn either clockwise or counterclockwise or randomly in either direction. This preference (or non-preference) is individually consistent in all trials but it is biased in favor of north if they choose between dishes positioned north and east or north and west, a phenomenon denoted as "pull of the north". Here, we replicated these experiments indoors, in magnetic coils, under natural magnetic field and under magnetic field shifted 90° clockwise. We demonstrate that "pull of the north" was present also in an environment without any outdoor cues and that the magnetic (and not topographic) north exerted the effect. The detailed analysis shows that the phenomenon involves also "repulsion of the south". The clockwise turning preference in the right-preferring dogs is more pronounced in the S-W combination, while the counterclockwise turning preference in the left-preferring dogs is pronounced in the S-E combination. In this way, south-placed dishes are less frequently chosen than would be expected, while the north-placed dishes are apparently more preferred. Turning preference did not correlate with the motoric paw laterality (Kong test). Given that the choice of a dish is visually guided, we postulate that the turning preference was determined by the dominant eye, so that a dominant right eye resulted in clockwise, and a dominant left eye in counterclockwise turning. Assuming further that magnetoreception in canines is based on the radical-pair mechanism, a "conflict of interests" may be expected, if the dominant eye guides turning away from north, yet the contralateral eye "sees the north", which generally acts attractive, provoking body alignment along the north-south axis.
- MeSH
- chování zvířat fyziologie MeSH
- magnetické pole * MeSH
- podněty * MeSH
- prostorové chování fyziologie MeSH
- psi MeSH
- změna polohy v prostoru fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- psi MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Magnetic sensing is used to structure every-day, non-migratory behaviours in many animals. We show that crayfish exhibit robust spontaneous magnetic alignment responses. These magnetic behaviours are altered by interactions with Branchiobdellidan worms, which are obligate ectosymbionts. Branchiobdellidan worms have previously been shown to have positive effects on host growth when present at moderate densities, and negative effects at relatively high densities. Here we show that crayfish with moderate densities of symbionts aligned bimodally along the magnetic northeast-southwest axis, similar to passive magnetic alignment responses observed across a range of stationary vertebrates. In contrast, crayfish with high symbiont densities failed to exhibit consistent alignment relative to the magnetic field. Crayfish without symbionts shifted exhibited quadramodal magnetic alignment and were more active. These behavioural changes suggest a change in the organization of spatial behaviour with increasing ectosymbiont densities. We propose that the increased activity and a switch to quadramodal magnetic alignment may be associated with the use of systematic search strategies. Such a strategy could increase contact-rates with conspecifics in order to replenish the beneficial ectosymbionts that only disperse between hosts during direct contact. Our results demonstrate that crayfish perceive and respond to magnetic fields, and that symbionts influence magnetically structured spatial behaviour of their hosts.
Magnetoreception, the ability to sense the Earth's magnetic field (MF), is a widespread phenomenon in the animal kingdom. In 1966, the first report on a magnetosensitive vertebrate, the European robin (Erithacus rubecula), was published. After that, numerous further species of different taxa have been identified to be magnetosensitive as well. Recently, it has been demonstrated that domestic dogs (Canis lupus familiaris) prefer to align their body axis along the North-South axis during territorial marking under calm MF conditions and that they abandon this preference when the Earth's MF is unstable. In a further study conducting a directional two-choice-test, dogs showed a spontaneous preference for the northern direction. Being designated as putatively magnetosensitive and being also known as trainable for diverse choice and search tests, dogs seem to be suitable model animals for a direct test of magnetoreception: learning to find a magnet. Using operant conditioning dogs were trained to identify the MF of a bar magnet in a three-alternative forced-choice experiment. We excluded visual cues and used control trials with food treats to test for the role of olfaction in finding the magnet. While 13 out of 16 dogs detected the magnet significantly above chance level (53-73% success rate), none of the dogs managed to do so in finding the food treat (23-40% success rate). In a replication of the experiment under strictly blinded conditions five out of six dogs detected the magnet above chance level (53-63% success rate). These experiments support the existence of a magnetic sense in domestic dogs. Whether the sense enables dogs to perceive MFs as weak as the Earth's MF, if they use it for orientation, and by which mechanism the fields are perceived remain open questions.
- Klíčová slova
- Behavioral test, Domestic dogs, Magnetoreception, Operant conditioning,
- Publikační typ
- časopisecké články MeSH
The mammalian magnetic sense is predominantly studied in species with reduced vision such as mole-rats and bats. Far less is known about surface-dwelling (epigeic) rodents with well-developed eyes. Here, we tested the wood mouse Apodemus sylvaticus for magnetoreception using a simple behavioural assay in which mice are allowed to build nests overnight in a visually symmetrical, circular arena. The tests were performed in the ambient magnetic field or in a field rotated by 90°. When plotted with respect to magnetic north, the nests were bimodally clustered in the northern and southern sectors, clearly indicating that the animals used magnetic cues. Additionally, mice were tested in the ambient magnetic field with a superimposed radio frequency magnetic field of the order of 100 nT. Wood mice exposed to a 0.9 to 5 MHz frequency sweep changed their preference from north-south to east-west. In contrast to birds, however, a constant frequency field tuned to the Larmor frequency (1.33 MHz) had no effect on mouse orientation. In sum, we demonstrated magnetoreception in wood mice and provide first evidence for a radical-pair mechanism in a mammal.
- MeSH
- čití, cítění fyziologie MeSH
- elektromagnetické záření MeSH
- hnízdění fyziologie MeSH
- magnetické pole * MeSH
- Murinae fyziologie MeSH
- orientace fyziologie MeSH
- rádiové vlny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Magnetoreception has been convincingly demonstrated in only a few mammalian species. Among rodents, magnetic compass orientation has been documented in four species of subterranean mole rats and two epigeic (i.e. active above ground) species-the Siberian hamster and the C57BL/6J mouse. The mole rats use the magnetic field azimuth to determine compass heading; their directional preference is spontaneous and unimodal, and their magnetic compass is magnetite-mediated. By contrast, the primary component of orientation response is learned in the hamster and the mouse, but both species also exhibit a weak spontaneous bimodal preference in the natural magnetic field. To determine whether the magnetic compass of wild epigeic rodents features the same functional properties as that of laboratory rodents, we investigated magnetic compass orientation in the bank vole Clethrionomys glareolus (Cricetidae, Rodentia). The voles exhibited a robust spontaneous bimodal directional preference, i.e. built nests and slept preferentially along the north-south axis, and deflected their directional preference according to a shift in the direction of magnetic north, clearly indicating that they were deriving directional information from the magnetic field. Thus, bimodal, axially symmetrical directional choice seems to be a common feature shared by epigeic rodents. However, spontaneous directional preference in the bank vole appeared to be more pronounced than that reported in the hamster and the mouse. These findings suggest that bank voles are well suited for future studies investigating the adaptive significance and mechanisms of magnetic orientation in epigeic rodents.
- MeSH
- Arvicolinae fyziologie MeSH
- hnízdění fyziologie MeSH
- magnetické jevy * MeSH
- orientace fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
INTRODUCTION: Several mammalian species spontaneously align their body axis with respect to the Earth's magnetic field (MF) lines in diverse behavioral contexts. Magnetic alignment is a suitable paradigm to scan for the occurrence of magnetosensitivity across animal taxa with the heuristic potential to contribute to the understanding of the mechanism of magnetoreception and identify further functions of magnetosensation apart from navigation. With this in mind we searched for signs of magnetic alignment in dogs. We measured the direction of the body axis in 70 dogs of 37 breeds during defecation (1,893 observations) and urination (5,582 observations) over a two-year period. After complete sampling, we sorted the data according to the geomagnetic conditions prevailing during the respective sampling periods. Relative declination and intensity changes of the MF during the respective dog walks were calculated from daily magnetograms. Directional preferences of dogs under different MF conditions were analyzed and tested by means of circular statistics. RESULTS: Dogs preferred to excrete with the body being aligned along the North-South axis under calm MF conditions. This directional behavior was abolished under unstable MF. The best predictor of the behavioral switch was the rate of change in declination, i.e., polar orientation of the MF. CONCLUSIONS: It is for the first time that (a) magnetic sensitivity was proved in dogs, (b) a measurable, predictable behavioral reaction upon natural MF fluctuations could be unambiguously proven in a mammal, and (c) high sensitivity to small changes in polarity, rather than in intensity, of MF was identified as biologically meaningful. Our findings open new horizons in magnetoreception research. Since the MF is calm in only about 20% of the daylight period, our findings might provide an explanation why many magnetoreception experiments were hardly replicable and why directional values of records in diverse observations are frequently compromised by scatter.
- Publikační typ
- časopisecké články MeSH
Alignment is a spontaneous behavioral preference of particular body orientation that may be seen in various vertebrate or invertebrate taxa. Animals often optimize their positions according to diverse directional environmental factors such as wind, stream, slope, sun radiation, etc. Magnetic alignment represents the simplest directional response to the geomagnetic field and a growing body of evidence of animals aligning their body positions according to geomagnetic lines whether at rest or during feedings is accumulating. Recently, with the aid of Google Earth application, evidence of prevailing North-South (N-S) body orientation of cattle on pastures was published (Begall et al. PNAS 105:13451-13455, 2008; Burda et al. PNAS 106:5708-5713, 2009). Nonetheless, a subsequent study from a different laboratory did not confirm this phenomenon (Hert et al. J Comp Physiol A 197:677-682, 2011). The aim of our study was to enlarge the pool of independently gained data on this remarkable animal behavior. By satellite snapshots analysis and using blinded protocol we scored positions of 2,235 individuals in 74 herds. Our results are in line with the original findings of prevailing N-S orientation of grazing cattle. In addition, we found that mutual distances between individual animals within herds (herd density) affect their N-S preference-a new phenomenon giving some insight into biological significance of alignment.
- MeSH
- chování zvířat fyziologie MeSH
- elektromagnetická pole * MeSH
- orientace fyziologie MeSH
- skot fyziologie MeSH
- zvířata MeSH
- Check Tag
- skot fyziologie MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Landing flight in birds is demanding on visual control of velocity, distance to target, and slope of descent. Birds flying in flocks must also keep a common course of landing in order to avoid collisions. Whereas the wind direction may provide a cue for landing, the nature of the landing direction indicator under windless conditions has been unknown. We recorded and analysed landing directions of 3,338 flocks in 14 species of water birds in eight countries. RESULTS: We show that the preferred landing direction, independently of the direction from which the birds have arrived, is along the north-south axis. We analysed the effect of the time of the year, time of the day (and thus sun position), weather (sunny versus overcast), light breeze, locality, latitude, and magnetic declination in 2,431 flocks of mallards (Anas platyrhynchos) and found no systematic effect of these factors upon the preferred direction of landing. We found that magnetic North was a better predictor for landing direction than geographic North. CONCLUSIONS: In absence of any other common denominator determining the landing direction, the alignment with the magnetic field lines seems to be the most plausible if not the only explanation for the directional landing preference under windless and overcast conditions and we suggest that the magnetic field thus provides a landing direction indicator.
- Publikační typ
- časopisecké články MeSH
While magnetoreception in birds has been studied intensively, the literature on magnetoreception in bony fish, and particularly in non-migratory fish, is quite scarce. We examined alignment of common carps (Cyprinus carpio) at traditional Christmas sale in the Czech Republic. The sample comprised measurements of the directional bearings in 14,537 individual fish, distributed among 80 large circular plastic tubs, at 25 localities in the Czech Republic, during 817 sampling sessions, on seven subsequent days in December 2011. We found that carps displayed a statistically highly significant spontaneous preference to align their bodies along the North-South axis. In the absence of any other common orientation cues which could explain this directional preference, we attribute the alignment of the fish to the geomagnetic field lines. It is apparent that the display of magnetic alignment is a simple experimental paradigm of great heuristic potential.
- MeSH
- kapři fyziologie MeSH
- magnetické jevy * MeSH
- obchod * MeSH
- orientace MeSH
- světlo MeSH
- voda MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- voda MeSH