Most cited article - PubMed ID 21244420
Constraints on host choice: why do parasitic birds rarely exploit some common potential hosts?
Brood parasites lay their eggs in other females' nests, leaving the host parents to hatch and rear their young. Studying how brood parasites manipulate hosts into raising their young and how hosts detect parasitism provide important insights in the field of coevolutionary biology. Brood parasites, such as cuckoos and cowbirds, gain an evolutionary advantage because they do not have to pay the costs of rearing their own young. However, these costs select for host defenses against all developmental stages of parasites, including eggs, their young, and adults. Egg rejection experiments are the most common method used to study host defenses. During these experiments, a researcher places an experimental egg in a host nest and monitors how hosts respond. Color is often manipulated, and the expectation is that the likelihood of egg discrimination and the degree of dissimilarity between the host and experimental egg are positively related. This paper serves as a guide for conducting egg rejection experiments from describing methods for creating consistent egg colors to analyzing the findings of such experiments. Special attention is given to a new method involving uniquely colored eggs along color gradients that has the potential to explore color biases in host recognition. Without standardization, it is not possible to compare findings between studies in a meaningful way; a standard protocol within this field will allow for increasingly accurate and comparable results for further experiments.
- MeSH
- Biological Evolution MeSH
- Nesting Behavior * MeSH
- Ovum growth & development MeSH
- Birds MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Video-Audio Media MeSH
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Obligate avian brood parasitic species impose the costs of incubating foreign eggs and raising young upon their unrelated hosts. The most common host defence is the rejection of parasitic eggs from the nest. Both egg colours and spot patterns influence egg rejection decisions in many host species, yet no studies have explicitly examined the role of variation in spot coloration. We studied the American robin Turdus migratorius, a blue-green unspotted egg-laying host of the brown-headed cowbird Molothrus ater, a brood parasite that lays non-mimetic spotted eggs. We examined host responses to model eggs with variable spot coloration against a constant robin-mimetic ground colour to identify patterns of rejection associated with perceived contrast between spot and ground colours. By using avian visual modelling, we found that robins were more likely to reject eggs whose spots had greater chromatic (hue) but not achromatic (brightness) contrast. Therefore, egg rejection decision rules in the American robin may depend on the colour contrast between parasite eggshell spot and host ground coloration. Our study also suggests that egg recognition in relation to spot coloration, like ground colour recognition, is tuned to the natural variation of avian eggshell spot colours but not to unnatural spot colours.
- Keywords
- American robin, Brood parasitism, Chroma, Egg rejection, Spectrometry, Spot coloration,
- MeSH
- Nesting Behavior MeSH
- Ovum MeSH
- Egg Shell * MeSH
- Songbirds MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Accurate recognition of salient cues is critical for adaptive responses, but the underlying sensory and cognitive processes are often poorly understood. For example, hosts of avian brood parasites have long been assumed to reject foreign eggs from their nests based on the total degree of dissimilarity in colour to their own eggs, regardless of the foreign eggs' colours. We tested hosts' responses to gradients of natural (blue-green to brown) and artificial (green to purple) egg colours, and demonstrate that hosts base rejection decisions on both the direction and degree of colour dissimilarity along the natural, but not artificial, gradient of egg colours. Hosts rejected brown eggs and accepted blue-green eggs along the natural egg colour gradient, irrespective of the total perceived dissimilarity from their own egg's colour. By contrast, their responses did not vary along the artificial colour gradient. Our results demonstrate that egg recognition is specifically tuned to the natural gradient of avian eggshell colour and suggest a novel decision rule. These results highlight the importance of considering sensory reception and decision rules when studying perception, and illustrate that our understanding of recognition processes benefits from examining natural variation in phenotypes.
- Keywords
- brood parasitism, colour perception, decision-making, egg discrimination, recognition,
- MeSH
- Color * MeSH
- Nesting Behavior * MeSH
- Ovum MeSH
- Birds * MeSH
- Egg Shell * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Co-evolutionary arms-races result in spatio-temporally dynamic relationships between interacting species, e.g., brood parasites and their avian hosts. However, majority of avian co-evolutionary studies are limited to "snap-shots" of a single breeding season in an open-nesting host. In a long-term study (11 breeding seasons), we explored a unique system between the brood parasitic common cuckoo (Cuculus canorus) and its host, the common redstart (Phoenicurus phoenicurus) which is exceptional among all cuckoo hosts due to being a cavity nester. Conditions in cavities are different from open nests, e.g., lower risks of predation, more favourable microclimate, increased risks of unsuccessful eviction of host offspring by the cuckoo nestling. Different conditions in cavities thus can be expected to shape parasite-host coevolution differently from what is typically studied in open nesting hosts. RESULTS: In our highly parasitised nest-box population (32.5%, n = 569 nests) only 35.7% of cuckoo eggs were laid into the nest cup and incubated by redstarts. Host nests shifted availability to later into the breeding season from 2006 to 2016 and cuckoos followed this trend by also shifting their timing of parasitism. Although previous studies revealed that redstarts selectively eject experimental non-mimetic eggs (desertion was not a specific response to foreign eggs), the hosts never ejected naturally-laid cuckoo eggs or cuckoo eggs cross-fostered into naturally non-parasitised nests. We solve the long-standing debate about the origin of cuckoo eggs found on the nest rim: we gained the first direct video-recording evidence that eggs found on the nest rim were mislaid by parasites and not ejected by hosts. Naturally-parasitised nests were deserted more often (18.6%) than control non-parasitized nests (5.6%) or nests artificially parasitised by us (1.4%). This suggests that the sight of the laying cuckoo female is the primary cue that triggers egg rejection (by desertion) in this host. Review of data from this and other study sites (10 populations, n = 853 experiments) demonstrates high variability in rejection rates and shows that populations facing higher parasitism rates reject parasitic eggs with higher frequencies. Surprisingly, cuckoo chicks either growing solitarily or with redstart chicks did not differ in their fledging success. CONCLUSIONS: We suggest that the redstart is an ideal model system to study the flexibility and limits of brood parasite-host co-evolution in an extreme ecological setting.
- Keywords
- Arms-races, Co-evolution, Defence, Mimicry,
- MeSH
- Biological Evolution * MeSH
- Models, Biological * MeSH
- Ecology * MeSH
- Nesting Behavior physiology MeSH
- Oviposition physiology MeSH
- Ovum physiology MeSH
- Parasites physiology MeSH
- Passeriformes physiology MeSH
- Birds physiology MeSH
- Seasons MeSH
- Geography MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Finland MeSH
Evolutionary hypotheses regarding the function of eggshell phenotypes, from solar protection through mimicry, have implicitly assumed that eggshell appearance remains static throughout the laying and incubation periods. However, recent research demonstrates that egg coloration changes over relatively short, biologically relevant timescales. Here, we provide the first evidence that such changes impact brood parasite-host eggshell color mimicry during the incubation stage. First, we use long-term data to establish how rapidly the Acrocephalus arundinaceus Linnaeus (great reed warbler) responded to natural parasitic eggs laid by the Cuculus canorus Linnaeus (common cuckoo). Most hosts rejected parasitic eggs just prior to clutch completion, but the host response period extended well into incubation (~10 days after clutch completion). Using reflectance spectrometry and visual modeling, we demonstrate that eggshell coloration in the great reed warbler and its brood parasite, the common cuckoo, changes rapidly, and the extent of eggshell color mimicry shifts dynamically over the host response period. Specifically, 4 days after being laid, the host should notice achromatic color changes to both cuckoo and warbler eggs, while chromatic color changes would be noticeable after 8 days. Furthermore, we demonstrate that the perceived match between host and cuckoo eggshell color worsened over the incubation period. These findings have important implications for parasite-host coevolution dynamics, because host egg discrimination may be aided by disparate temporal color changes in host and parasite eggs.
- Keywords
- Avian vision, brood parasitism, coevolution, common cuckoo, mimicry, pigments,
- Publication type
- Journal Article MeSH
Brood parasitic birds lay their eggs in other birds' nests, leaving hosts to raise their offspring. To understand parasite-host coevolutionary arms races, many studies have examined host responses to experimentally introduced eggs. However, attending parents often need to be flushed from their nests to add experimental eggs. If these birds witness parasitism events, they may recognize and reject foreign eggs more readily than parents who did not. We found that, after being flushed, female blackbirds, Turdus merula, remained close to their nests. Flushed females were more likely to eject foreign eggs and did so more quickly than females that were not flushed during experimentation. In contrast, flushing did not predict responses and latency to responses to parasitism by song thrush, Turdus philomelos, which flew farther from their nests and likely did not witness experimental parasitism. When statistically considering flushing, previously published conclusions regarding both species' response to experimental parasitism did not change. Nevertheless, we recommend that researchers record and statistically control for whether hosts were flushed prior to experimental parasitism. Our results have broad implications because more vigilant and/or bolder parents can gain more information about parasitism events and therefore have better chances of successfully defending against brood parasitism.
- MeSH
- Behavior, Animal MeSH
- Host-Parasite Interactions * MeSH
- Birds parasitology MeSH
- Eggs MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Avian brood parasitism is an exceptional reproductive strategy whereby parasites reduce their own costs associated with parental care and impose them on the host parents. Consequently, host species have evolved multiple defensive mechanisms to combat parasitism. The vast majority of research attention to date has examined host defenses to recognize and reject parasitic eggs. The recently proposed "egg arrangement hypothesis" suggests that hosts may not focus solely on individual eggs' features, but instead the overall arrangement of the clutch may also provide a cue that parasitism has occurred. Correlative data revealed that host females maintaining a consistent egg arrangement across the incubation period were more likely to reject foreign egg models than females that did not keep a consistent egg arrangement. Here, we provide the first experimental test of this hypothesis in the European blackbird (Turdus merula). We experimentally parasitized nests such that the egg arrangement was either disrupted or not disrupted. We found no evidence that altered egg arrangement was used as a cue for egg rejection by host females. Therefore, we suggest that females that keep consistent egg arrangement are more likely to eject foreign eggs for other correlated reasons. Thus, egg arrangement does not serve as an independent cue to trigger egg rejection responses to parasitism in this host species.
- MeSH
- Nesting Behavior * MeSH
- Host-Parasite Interactions MeSH
- Ovum * MeSH
- Songbirds * MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Why have birds evolved the ability to reject eggs? Typically, foreign egg discrimination is interpreted as evidence that interspecific brood parasitism (IP) has selected for the host's ability to recognize and eliminate foreign eggs. Fewer studies explore the alternative hypothesis that rejection of interspecific eggs is a by-product of host defenses, evolved against conspecific parasitism (CP). We performed a large scale study with replication across taxa (two congeneric Turdus thrushes), space (populations), time (breeding seasons), and treatments (three types of experimental eggs), using a consistent design of egg rejection experiments (n = 1057 nests; including controls), in areas with potential IP either present (Europe; native populations) or absent (New Zealand; introduced populations). These comparisons benefited from the known length of allopatry (one and a half centuries), with no gene flow between native and introduced populations, which is rarely available in host-parasite systems. RESULTS: Hosts rejected CP at unusually high rates for passerines (up to 60%). CP rejection rates were higher in populations with higher conspecific breeding densities and no risks of IP, supporting the CP hypothesis. IP rejection rates did not covary geographically with IP risk, contradicting the IP hypothesis. High egg rejection rates were maintained in the relatively long-term isolation from IP despite non-trivial rejection costs and errors. CONCLUSIONS: These egg rejection patterns, combined with recent findings that these thrushes are currently unsuitable hosts of the obligate parasitic common cuckoo (Cuculus canorus), are in agreement with the hypothesis that the rejection of IP is a by-product of fine-tuned egg discrimination evolved due to CP. Our study highlights the importance of considering both IP and CP simultaneously as potential drivers in the evolution of egg discrimination, and illustrates how populations introduced to novel ecological contexts can provide critical insights into brood parasite-host coevolution.
- Keywords
- Coevolution, Collateral damage, Discrimination, Heterospecific brood parasitism, Intraspecific brood parasitism, Species introductions,
- Publication type
- Journal Article MeSH
BACKGROUND: Plumage polymorphism may evolve during coevolution between brood parasites and their hosts if rare morph(s), by contravening host search image, evade host recognition systems better than common variant(s). Females of the parasitic common cuckoo (Cuculus canorus) are a classic example of discrete color polymorphism: gray females supposedly mimic the sparrowhawk (Accipiter nisus), while rufous females are believed to mimic the kestrel (Falco tinnunculus). Despite many studies on host responses to adult cuckoos comprehensive tests of the "hawk mimicry" and "kestrel mimicry" hypotheses are lacking so far. RESULTS: We tested these hypotheses by examining host responses to stuffed dummies of the sparrowhawk, kestrel, cuckoo and the innocuous turtle dove (Streptopelia turtur) as a control at the nest. Our experimental data from an aggressive cuckoo host, the great reed warbler (Acrocephalus arundinaceus), showed low effectiveness of cuckoo-predator mimicry against more aggressive hosts regardless of the type of model and the degree of perfection of the mimic. Specifically, warblers discriminated gray cuckoos from sparrowhawks but did not discriminate rufous cuckoos from kestrels. However, both gray and rufous cuckoos were attacked vigorously and much more than control doves. The ratio of aggression to gray vs. rufous cuckoo was very similar to the ratio between frequencies of gray vs. rufous cuckoo morphs in our study population. CONCLUSIONS: Overall, our data combined with previous results from other localities suggest polymorphism dynamics are not strongly affected by local predator model frequencies. Instead, hosts responses and discrimination abilities are proportional, other things being equal, to the frequency with which hosts encounter various cuckoo morphs near their nests. This suggests that female cuckoo polymorphism is a counter-adaptation to thwart a specific host adaptation, namely an ability to not be fooled by predator mimicry. We hypothesize the dangerousness of a particular model predator (sparrowhawks are more dangerous to adult birds than kestrels) may be another important factor responsible for better discrimination between the gray cuckoo and its model rather than between the rufous cuckoo and its model. We also provide a review of relevant existing literature, detailed discussion of plumage polymorphism in cuckoos, methodological recommendations and new ideas for future work.
- Publication type
- Journal Article MeSH
Evolutionary arms-races between avian brood parasites and their hosts have typically resulted in some spectacular adaptations, namely remarkable host ability to recognize and reject alien eggs and, in turn, sophisticated parasite egg mimicry. In a striking contrast to hosts sometimes rejecting even highly mimetic eggs, the same species typically fail to discriminate against highly dissimilar parasite chicks. Understanding of this enigma is still hampered by the rarity of empirical tests - and consequently evidence - for chick discrimination. Recent work on Australian host-parasite systems (Gerygone hosts vs. Chalcites parasites), increased not only the diversity of hosts showing chick discrimination, but also discovered an entirely novel host behavioural adaptation. The hosts do not desert parasite chicks (as in all previously reported empirical work) but physically remove living parasites from their nests. Here, I briefly discuss these exciting findings and put them in the context of recent empirical and theoretical work on parasite chick discrimination. Finally, I review factors responsible for a relatively slow progress in this research area and suggest most promising avenues for future research.