Nejvíce citovaný článek - PubMed ID 21297036
Being rooted in place, plants are faced with the challenge of responding to unfavourable local conditions. One such condition, heat stress, contributes massively to crop losses globally. Heatwaves are predicted to increase, and it is of vital importance to generate crops that are tolerant to not only heat stress but also to several other abiotic stresses (e.g. drought stress, salinity stress) to ensure that global food security is protected. A better understanding of the molecular mechanisms that underlie the temperature stress response in pollen will be a significant step towards developing effective breeding strategies for high and stable production in crop plants. While most studies have focused on the vegetative phase of plant growth to understand heat stress tolerance, it is the reproductive phase that requires more attention as it is more sensitive to elevated temperatures. Every phase of reproductive development is affected by environmental challenges, including pollen and ovule development, pollen tube growth, male-female cross-talk, fertilization, and embryo development. In this review we summarize how pollen is affected by heat stress and the molecular mechanisms employed during the stress period, as revealed by classical and -omics experiments.
- Klíčová slova
- heat stress (HS), heat stress response (HSR), multiomics, pollen development, thermotolerance,
- MeSH
- fyziologický stres MeSH
- pyl MeSH
- reakce na tepelný šok MeSH
- šlechtění rostlin * MeSH
- termotolerance * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Cytoplasmic male sterility (CMS), encoded by the interacting mitochondrial and nuclear genes, causes pollen abortion or non-viability. CMS is widely used in agriculture and extensively studied in crops. Much less is known about CMS in wild species. We performed a comparative transcriptomic analysis of male sterile and fertile individuals of Silene vulgaris, a model plant for the study of gynodioecy, to reveal the genes responsible for pollen abortion in this species. We used RNA-seq datasets previously employed for the analysis of mitochondrial and plastid transcriptomes of female and hermaphrodite flower buds, making it possible to compare the transcriptomes derived from three genomes in the same RNA specimen. We assembled de novo transcriptomes for two haplotypes of S. vulgaris and identified differentially expressed genes between the females and hermaphrodites, associated with stress response or pollen development. The gene for alternative oxidase was downregulated in females. The genetic pathways controlling CMS in S. vulgaris are similar to those in crops. The high number of the differentially expressed nuclear genes contrasts with the uniformity of organellar transcriptomes across genders, which suggests these pathways are evolutionarily conserved and that selective mechanisms may shield organellar transcription against changes in the cytoplasmic transcriptome.
- Klíčová slova
- Silene vulgaris, cytoplasmic male sterility, differential gene expression,
- MeSH
- anotace sekvence MeSH
- buněčné jádro genetika MeSH
- down regulace genetika MeSH
- genová ontologie MeSH
- haplotypy genetika MeSH
- messenger RNA genetika metabolismus MeSH
- mitochondriální proteiny genetika metabolismus MeSH
- neplodnost rostlin genetika MeSH
- oxidační stres genetika MeSH
- oxidoreduktasy genetika metabolismus MeSH
- pyl genetika MeSH
- regulace genové exprese u rostlin * MeSH
- rostlinné proteiny genetika metabolismus MeSH
- Silene genetika fyziologie MeSH
- stanovení celkové genové exprese * MeSH
- transkriptom genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alternative oxidase MeSH Prohlížeč
- messenger RNA MeSH
- mitochondriální proteiny MeSH
- oxidoreduktasy MeSH
- rostlinné proteiny MeSH
Reactive oxygen species (ROS) are produced in the olive reproductive organs as the result of intense metabolism. ROS production and pattern of distribution depend on the developmental stage, supposedly playing a broad panel of functions, which include defense and signaling between pollen and pistil. Among ROS-producing mechanisms, plasma membrane NADPH-oxidase activity is being highlighted in plant tissues, and two enzymes of this type have been characterized in Arabidopsis thaliana pollen (RbohH and RbohJ), playing important roles in pollen physiology. Besides, pollen from different species has shown distinct ROS production mechanism and patterns of distribution. In the olive reproductive tissues, a significant production of superoxide has been described. However, the enzymes responsible for such generation are unknown. Here, we have identified an Rboh-type gene (OeRbohH), mainly expressed in olive pollen. OeRbohH possesses a high degree of identity with RbohH and RbohJ from Arabidopsis, sharing most structural features and motifs. Immunohistochemistry experiments allowed us to localize OeRbohH throughout pollen ontogeny as well as during pollen tube elongation. Furthermore, the balanced activity of tip-localized OeRbohH during pollen tube growth has been shown to be important for normal pollen physiology. This was evidenced by the fact that overexpression caused abnormal phenotypes, whereas incubation with specific NADPH oxidase inhibitor or gene knockdown lead to impaired ROS production and subsequent inhibition of pollen germination and pollen tube growth.
- Klíčová slova
- NADPH oxidase, NOX, Rboh, olive, pollen, sexual plant reproduction,
- Publikační typ
- časopisecké články MeSH