Nejvíce citovaný článek - PubMed ID 21321977
TGF-β1-induced EMT of non-transformed prostate hyperplasia cells is characterized by early induction of SNAI2/Slug
Epithelial-mesenchymal transition (EMT) is a crucial and fundamental mechanism in many cellular processes, beginning with embryogenesis via tissue remodulation and wound healing, and plays a vital role in tumorigenesis and metastasis formation. EMT is a complex process that involves many transcription factors and genes that enable the tumor cell to leave the primary location, invade the basement membrane, and send metastasis to other tissues. Moreover, it may help the tumor avoid the immune system and establish radioresistance and chemoresistance. It may also change the normal microenvironment, thus promoting other key factors for tumor survival, such as hypoxia-induced factor-1 (HIF-1) and promoting neoangiogenesis. In this review, we will focus mainly on the role of EMT in benign prostate disease and especially in the process of establishment of malignant prostate tumors, their invasiveness, and aggressive behavior. We will discuss relevant study methods for EMT evaluation and possible clinical implications. We will also introduce clinical trials conducted according to CONSORT 2010 that try to harness EMT properties in the form of circulating tumor cells to predict aggressive patterns of prostate cancer. This review will provide the most up-to-date information to establish a keen understanding of the cellular and microenvironmental processes for developing novel treatment lines by modifying or blocking the pathways.
- Klíčová slova
- BPH, EMT, epithelial-mesenchymal transition, prostate cancer, transcription factors,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
PURPOSE: The purpose of the study was to determine whether the GDF-15 is present in follicular fluid; to evaluate if there is a relation between follicular and serum levels of GDF-15 and fertility status of study subjects; and to test whether granulosa cells, oocytes, or both produce GDF-15. METHODS: This study used follicular fluid (FF, serum, and oocytes obtained under informed consent from women undergoing oocyte retrieval for in vitro fertilization. It also used ovaries from deceased preterm newborns. Collection of FF and blood at the time of oocyte retrieval, ELISA and western blot were performed to determine levels and forms of GDF-15. Concentrations of GDF-15 in FF and serum, its expression in ovarian tissue, and secretion from granulosa cells were analyzed. RESULTS: GDF-15 concentration in FF ranged from 35 to 572 ng/ml, as determined by ELISA. Western blot analysis revealed the GDF-15 pro-dimer only in FF. Both normal healthy and cancerous granulosa cells secreted GDF-15 into culture media. Primary oocytes displayed cytoplasmic GDF-15 positivity in immunostained newborn ovaries, and its expression was also observed in fully grown human oocytes. CONCLUSIONS: To the best of our knowledge, this is the first documentation of cytokine GDF-15 presence in follicular fluid. Its concentration was not associated with donor/patient fertility status. Our data also show that GDF-15 is expressed and inducible in both normal healthy and cancerous granulosa cells, as well as in oocytes.
- Klíčová slova
- Follicular fluid, Follicular granulosa cells, Growth/differentiation factor-15, IVF,
- MeSH
- buněčná diferenciace genetika MeSH
- dospělí MeSH
- fertilizace in vitro MeSH
- folikulární buňky metabolismus MeSH
- folikulární tekutina metabolismus MeSH
- lidé MeSH
- odběr oocytu MeSH
- oocyty metabolismus MeSH
- růstový diferenciační faktor 15 genetika izolace a purifikace MeSH
- vývojová regulace genové exprese MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- GDF15 protein, human MeSH Prohlížeč
- růstový diferenciační faktor 15 MeSH
Plasticity of cancer cells, manifested by transitions between epithelial and mesenchymal phenotypes, represents a challenging issue in the treatment of neoplasias. Both epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are implicated in the processes of metastasis formation and acquisition of stem cell-like properties. Mouse double minute (MDM) 2 and MDMX are important players in cancer progression, as they act as regulators of p53, but their function in EMT and metastasis may be contradictory. Here, we show that the EMT phenotype in multiple cellular models and in clinical prostate and breast cancer samples is associated with a decrease in MDM2 and increase in MDMX expression. Modulation of EMT-accompanying changes in MDM2 expression in benign and transformed prostate epithelial cells influences their migration capacity and sensitivity to docetaxel. Analysis of putative mechanisms of MDM2 expression control demonstrates that in the context of defective p53 function, MDM2 expression is regulated by EMT-inducing transcription factors Slug and Twist. These results provide an alternative context-specific role of MDM2 in EMT, cell migration, metastasis, and therapy resistance.
- Klíčová slova
- MDM2/MDMX, SNAI2/SLUG, TWIST, epithelial-mesenchymal transition, prostate/breast cancer,
- MeSH
- epitelo-mezenchymální tranzice fyziologie MeSH
- fenotyp MeSH
- heterografty MeSH
- jaderné proteiny biosyntéza MeSH
- lidé MeSH
- myši nahé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory prostaty genetika metabolismus patologie MeSH
- nádory prsu genetika metabolismus patologie MeSH
- proteiny buněčného cyklu MeSH
- protoonkogenní proteiny c-mdm2 biosyntéza MeSH
- protoonkogenní proteiny biosyntéza MeSH
- transfekce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- jaderné proteiny MeSH
- MDM2 protein, human MeSH Prohlížeč
- MDM4 protein, human MeSH Prohlížeč
- proteiny buněčného cyklu MeSH
- protoonkogenní proteiny c-mdm2 MeSH
- protoonkogenní proteiny MeSH
BACKGROUND: Tumor heterogeneity and the plasticity of cancer cells present challenges for effective clinical diagnosis and therapy. Such challenges are epitomized by neuroendocrine transdifferentiation (NED) and the emergence of neuroendocrine-like cancer cells in prostate tumors. This phenomenon frequently arises from androgen-depleted prostate adenocarcinoma and is associated with the development of castration-resistant prostate cancer and poor prognosis. RESULTS: In this study, we showed that NED was evoked in both androgen receptor (AR)-positive and AR-negative prostate epithelial cell lines by growing the cells to a high density. Androgen depletion and high-density cultivation were both associated with cell cycle arrest and deregulated expression of several cell cycle regulators, such as p27Kip1, members of the cyclin D protein family, and Cdk2. Dual inhibition of Cdk1 and Cdk2 using pharmacological inhibitor or RNAi led to modulation of the cell cycle and promotion of NED. We further demonstrated that the cyclic adenosine 3', 5'-monophosphate (cAMP)-mediated pathway is activated in the high-density conditions. Importantly, inhibition of cAMP signaling using a specific inhibitor of adenylate cyclase, MDL-12330A, abolished the promotion of NED by high cell density. CONCLUSIONS: Taken together, our results imply a new relationship between cell cycle attenuation and promotion of NED and suggest high cell density as a trigger for cAMP signaling that can mediate reversible NED in prostate cancer cells.
- MeSH
- AMP cyklický metabolismus MeSH
- androgenní receptory metabolismus MeSH
- androgeny farmakologie MeSH
- cyklin-dependentní kinasa 2 metabolismus MeSH
- cyklin-dependentní kinasy metabolismus MeSH
- epitelové buňky účinky léků enzymologie patologie MeSH
- imunohistochemie MeSH
- inhibitory proteinkinas farmakologie MeSH
- kontrolní body buněčného cyklu účinky léků MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory prostaty patologie MeSH
- neuroendokrinní buňky účinky léků patologie MeSH
- počet buněk MeSH
- proteinkinasa CDC2 MeSH
- signální transdukce účinky léků MeSH
- transdiferenciace buněk * účinky léků MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- AMP cyklický MeSH
- androgenní receptory MeSH
- androgeny MeSH
- CDK1 protein, human MeSH Prohlížeč
- CDK2 protein, human MeSH Prohlížeč
- cyklin-dependentní kinasa 2 MeSH
- cyklin-dependentní kinasy MeSH
- inhibitory proteinkinas MeSH
- proteinkinasa CDC2 MeSH