Most cited article - PubMed ID 21684294
Expression of XRCC5 in peripheral blood lymphocytes is upregulated in subjects from a heavily polluted region in the Czech Republic
We aimed to identify the variables that modify levels of oxidatively damaged DNA and lipid peroxidation in subjects living in diverse localities of the Czech Republic (a rural area, a metropolitan locality, and an industrial region). The sampling of a total of 126 policemen was conducted twice in two sampling seasons. Personal characteristics, concentrations of particulate matter of aerodynamic diameter <2.5 µm and benzo[a]pyrene in the ambient air, activities of antioxidant mechanisms (superoxide dismutase, catalase, glutathione peroxidase, and antioxidant capacity), levels of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), concentrations of persistent organic pollutants in blood plasma, and urinary levels of polycyclic aromatic hydrocarbon metabolites were investigated as parameters potentially affecting the markers of DNA oxidation (8-oxo-7,8-dihydro-2′-deoxyguanosine) and lipid peroxidation (15-F2t-isoprostane). The levels of oxidative stress markers mostly differed between the localities in the individual sampling seasons. Multivariate linear regression analysis revealed IL-6, a pro-inflammatory cytokine, as a factor with the most pronounced effects on oxidative stress parameters. The role of other variables, including environmental pollutants, was minor. In conclusion, our study showed that oxidative damage to macromolecules was affected by processes related to inflammation; however, we did not identify a specific environmental factor responsible for the pro-inflammatory response in the organism.
- Keywords
- DNA, POPs, antioxidant response, environmental factors, lipids, oxidative damage,
- MeSH
- Antioxidants analysis MeSH
- Biomarkers MeSH
- DNA MeSH
- Interleukin-6 MeSH
- Air Pollutants * analysis toxicity MeSH
- Environmental Pollutants * analysis toxicity MeSH
- Humans MeSH
- Oxidative Stress MeSH
- Particulate Matter analysis MeSH
- Polycyclic Aromatic Hydrocarbons * analysis toxicity MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- Antioxidants MeSH
- Biomarkers MeSH
- DNA MeSH
- Interleukin-6 MeSH
- Air Pollutants * MeSH
- Environmental Pollutants * MeSH
- Particulate Matter MeSH
- Polycyclic Aromatic Hydrocarbons * MeSH
DNA methylation is the most studied epigenetic mechanism that regulates gene expression, and it can serve as a useful biomarker of prior environmental exposure and future health outcomes. This study focused on DNA methylation profiles in a human cohort, comprising 125 nonsmoking city policemen (sampled twice), living and working in three localities (Prague, Ostrava and Ceske Budejovice) of the Czech Republic, who spent the majority of their working time outdoors. The main characterization of the localities, differing by major sources of air pollution, was defined by the stationary air pollution monitoring of PM2.5, B[a]P and NO2. DNA methylation was analyzed by a genome-wide microarray method. No season-specific DNA methylation pattern was discovered; however, we identified 13,643 differentially methylated CpG loci (DML) for a comparison between the Prague and Ostrava groups. The most significant DML was cg10123377 (log2FC = -1.92, p = 8.30 × 10-4) and loci annotated to RPTOR (total 20 CpG loci). We also found two hypomethylated loci annotated to the DNA repair gene XRCC5. Groups of DML annotated to the same gene were linked to diabetes mellitus (KCNQ1), respiratory diseases (PTPRN2), the dopaminergic system of the brain and neurodegenerative diseases (NR4A2). The most significant possibly affected pathway was Axon guidance, with 86 potentially deregulated genes near DML. The cluster of gene sets that could be affected by DNA methylation in the Ostrava groups mainly includes the neuronal functions and biological processes of cell junctions and adhesion assembly. The study demonstrates that the differences in the type of air pollution between localities can affect a unique change in DNA methylation profiles across the human genome.
- Keywords
- DNA methylation, air pollution, environment, epigenetics, molecular epidemiology,
- MeSH
- Genome-Wide Association Study MeSH
- Adult MeSH
- Air Pollutants adverse effects MeSH
- Middle Aged MeSH
- Humans MeSH
- DNA Methylation drug effects MeSH
- Police * MeSH
- Environmental Exposure adverse effects MeSH
- Air Pollution adverse effects MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- Air Pollutants MeSH
The exposure of living organisms to environmental stress triggers defensive responses resulting in the activation of protective processes. Whenever the exposure occurs at low doses, defensive effects overwhelm the adverse effects of the exposure; this adaptive situation is referred to as "hormesis". Environmental, physical, and nutritional hormetins lead to the stimulation and strengthening of the maintenance and repair systems in cells and tissues. Exercise, heat, and irradiation are examples of physical hormetins, which activate heat shock-, DNA repair-, and anti-oxidative-stress responses. The health promoting effect of many bio-actives in fruits and vegetables can be seen as the effect of mildly toxic compounds triggering this adaptive stimulus. Numerous studies indicate that living organisms possess the ability to adapt to adverse environmental conditions, as exemplified by the fact that DNA damage and gene expression profiling in populations living in the environment with high levels of air pollution do not correspond to the concentrations of pollutants. The molecular mechanisms of the hormetic response include modulation of (a) transcription factor Nrf2 activating the synthesis of glutathione and the subsequent protection of the cell; (b) DNA methylation; and (c) microRNA. These findings provide evidence that hormesis is a toxicological event, occurring at low exposure doses to environmental stressors, having the benefit for the maintenance of a healthy status.
- Keywords
- adaptive response, microRNA machinery, preventive medicine,
- MeSH
- Epigenesis, Genetic * MeSH
- Adaptation, Physiological * MeSH
- Stress, Physiological * MeSH
- Hormesis * MeSH
- Humans MeSH
- Oxidative Stress MeSH
- DNA Damage MeSH
- Gene Expression Regulation MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
The cellular response to genotoxic treatment depends on the cell line used. Although tumor cell lines are widely used for genotoxicity tests, the interpretation of the results may be potentially hampered by changes in cellular processes caused by malignant transformation. In our study we used normal human embryonic lung fibroblasts (HEL12469 cells) and tested their response to treatment with benzo[a]pyrene (B[a]P) and extractable organic matter (EOM) from ambient air particles <2.5 µm (PM2.5) collected in two Czech cities differing in levels and sources of air pollution. We analyzed multiple endpoints associated with exposure to polycyclic aromatic hydrocarbons (PAHs) including the levels of bulky DNA adducts and the nucleotide excision repair (NER) response [expression of XPE, XPC and XPA genes on the level of mRNA and proteins, unscheduled DNA synthesis (UDS)]. EOMs were collected in the winter and summer of 2011 in two Czech cities with different levels and sources of air pollution. The effects of the studied compounds were analyzed in the presence (+S9) and absence (-S9) of the rat liver microsomal S9 fraction. The levels of bulky DNA adducts were highest after treatment with B[a]P, followed by winter EOMs; their induction by summer EOMs was weak. The induction of both mRNA and protein expression was observed, with the most pronounced effects after treatment with B[a]P (-S9); the response induced by EOMs from both cities and seasons was substantially weaker. The expression of DNA repair genes was not accompanied by the induction of UDS activity. In summary, our results indicate that the tested compounds induced low levels of DNA damage and affected the expression of NER genes; however, nucleotide excision repair was not induced.
- MeSH
- DNA Adducts MeSH
- Cell Line MeSH
- DNA-Binding Proteins genetics metabolism MeSH
- Fibroblasts drug effects metabolism MeSH
- Air Pollutants chemistry toxicity MeSH
- Environmental Pollutants chemistry toxicity MeSH
- Humans MeSH
- RNA, Messenger genetics MeSH
- DNA Repair * MeSH
- Particulate Matter chemistry toxicity MeSH
- Lung MeSH
- Polycyclic Aromatic Hydrocarbons chemistry toxicity MeSH
- Cell Proliferation drug effects MeSH
- Gene Expression Regulation drug effects MeSH
- Xeroderma Pigmentosum Group A Protein genetics metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA Adducts MeSH
- DNA-Binding Proteins MeSH
- Air Pollutants MeSH
- Environmental Pollutants MeSH
- RNA, Messenger MeSH
- Particulate Matter MeSH
- Polycyclic Aromatic Hydrocarbons MeSH
- Xeroderma Pigmentosum Group A Protein MeSH
- XPA protein, human MeSH Browser
- XPC protein, human MeSH Browser