Most cited article - PubMed ID 22114789
The effects of methamphetamine self-administration on behavioural sensitization in the olfactory bulbectomy rat model of depression
Depression is a psychiatric disorder characterized by a marked decrease in reward sensitivity. By using the olfactory bulbectomy (OBX) model of depression, it was shown that OBX rats display enhanced drug-taking and seeking behaviors in a self-administration paradigm than sham-operated (SHAM) controls, and sex is an important regulating factor. To reveal potential strain effects, we compared the operant behavior of male and female Sprague-Dawley and Wistar OBX and SHAM rats trained to self-administer palatable food pellets. Results showed that Sprague-Dawley OBX rats of both sexes exhibited lower operant responding rates and food intake than SHAM controls. Food restriction increased responding in both OBX and SHAM groups. Female rats responded more than males, but the OBX lesion abolished this effect. In Wistar rats, bulbectomy lowered food self-administration only during the last training days. Food self-administration was not significantly affected in Wistar rats by sex. In summary, this study showed that bulbectomy significantly reduces operant responding and food intake in male and female Sprague-Dawley rats while inducing a mild reducing effect only in the Wistar strain. Strain-dependent effects were also observed in the modulating role of sex and food restriction on operant responding and palatable food intake.
- Keywords
- depression, olfactory bulbectomy, reward, self-administration, sex, strain,
- Publication type
- Journal Article MeSH
Substance abuse and depression are common psychiatric disorders with a high rate of comorbidity. Both conditions affect differently men and women and preclinical research has showed many sex differences in drug addiction and depression. The most common approach for modeling depression-addiction comorbidity is the combination of the intravenous drug self-administration and the olfactory bulbectomy (OBX) models in rats. Such a combination has revealed enhanced drug-taking and drug-seeking behaviors in OBX rats, but no study has investigated so far potential sex differences in operant responding and motivation for natural reinforcers in OBX rats. This study investigated for the first time operant self-administration of palatable food pellets in male and female OBX rats under different feeding status, i.e., ad libitum vs. restricted food, and schedules of reinforcement, i.e., a continuous ratio schedule fixed ratio 1 (FR1) vs. a complex (FR5(x)) second order schedule of reinforcement. In the FR1 experiment, OBX rats of both sexes exhibited lower operant responding and intake of palatable food pellets than sham-operated controls, with food restriction leading to increased operant responding in both OBX and SHAM groups. Female rats showed higher responding than males but this effect was abolished by the OBX lesion. Similarly, in the (FR5(x)) second order schedule of reinforcement both male and female OBX rats showed lower responding and food intake, with SHAM and OBX females showing higher operant responding than corresponding male groups. Overall, our findings showed that: (i) responding for food was lower in OBX than in SHAM rats under both FR1 and (FR5(x)) schedules of reinforcement; (ii) sex and food restriction affect operant responding for palatable food; and (iii) the suppressing effect of OBX lesion on food intake was consistently present in both sexes and represents the most robust factor in the analysis. This may represent anhedonia which is associated with depressive-like phenotype and palatable food self-administration may serve as a robust behavioral index of anhedonia in the OBX model.
- Keywords
- depression, food intake, olfactory bulbectomy, reward, self-administration, sex difference,
- Publication type
- Journal Article MeSH
Methamphetamine abuse imposes a significant burden on individuals and society worldwide, and an effective therapy of methamphetamine addiction would provide distinguished social benefits. Ghrelin significantly participates in reinforcing neurobiological mechanisms of stimulants, including amphetamines; thus, ghrelin antagonism is proposed as a promising addiction treatment. The aim of our study was to elucidate whether the pretreatment with growth hormone secretagogue receptor (GHS-R1A) antagonist, substance JMV2959, could reduce the methamphetamine intravenous self-administration (IVSA) and the tendency to relapse, and whether JMV2959 could reduce or prevent methamphetamine-induced conditioned place preference (CPP) in rats. Following an adequate maintenance period, JMV2959 3 mg/kg was administered intraperitoneally 20 min before three consequent daily 180 min sessions of methamphetamine IVSA under a fixed ratio FR1, which significantly reduced the number of active lever-pressings, the number of infusions, and the amount of the consumed methamphetamine dose. Pretreatment with JMV2959 also reduced or prevented relapse-like behavior tested in rats on the 12th day of the abstinence period. Pretreatment with JMV2959 significantly reduced the expression of methamphetamine-induced CPP. Simultaneous administration of JMV2959 with methamphetamine during the conditioning period significantly reduced the methamphetamine-CPP. Our results encourage further research of the ghrelin antagonism as a potential new pharmacological tool for methamphetamine addiction treatment.
- Keywords
- addiction, conditioned place preference, ghrelin antagonism, intravenous self-administration, methamphetamine, rat,
- MeSH
- Analysis of Variance MeSH
- Self Administration MeSH
- Time Factors MeSH
- Glycine administration & dosage analogs & derivatives pharmacology MeSH
- Administration, Intravenous MeSH
- Methamphetamine administration & dosage pharmacology MeSH
- Conditioning, Psychological drug effects MeSH
- Rats, Wistar MeSH
- Spatial Behavior drug effects MeSH
- Receptors, Ghrelin antagonists & inhibitors metabolism MeSH
- Central Nervous System Stimulants administration & dosage pharmacology MeSH
- Body Weight drug effects MeSH
- Triazoles administration & dosage pharmacology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Glycine MeSH
- Methamphetamine MeSH
- N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminoacetamide MeSH Browser
- Receptors, Ghrelin MeSH
- Central Nervous System Stimulants MeSH
- Triazoles MeSH
Ketamine may prove to be a potential candidate in treating the widespread drug addiction/substance abuse epidemic among patients with schizophrenia. Clinical studies have shown ketamine to reduce cocaine and heroin cravings. However, the use of ketamine remains controversial as it may exacerbate the symptoms of schizophrenia. Therefore, the aim of this study is to characterize the effects of ketamine on drug addiction in schizophrenia using the methylazoxymethanol (MAM) acetate rat model on operant IV methamphetamine (METH) self-administration. MAM was administered intraperitoneally (22 mg/kg) on gestational day 17. Locomotor activity test and later IV self-administration (IVSA) were then performed in the male offspring followed by a period of forced abstinence and relapse of METH taking. After reaching stable intakes in the relapse phase, ketamine (5 mg/kg) was administered intraperitoneally 30 min prior to the self-administration session. As documented previously, the MAM rats showed a lack of habituation in the locomotor activity test but developed stable maintenance of METH self-administration with no difference in operant behaviour to control animals. Results show that ketamine treatment significantly reduced the METH intake in the control animals but not in MAM animals. Ketamine effect on METH self-administration may be explained by increased glutamatergic signalling in the prefrontal cortex caused by the N-methyl-D-aspartate antagonism and disinhibition of GABA interneurons which was shown to be impaired in the MAM rats. This mechanism may at least partly explain the clinically proven anti-craving potential of ketamine and allow development of more specific anti-craving medications with fewer risks.
- Keywords
- Ketamine, MAM model, Methamphetamine, Self-administration, Sprague-Dawley rats,
- MeSH
- Analysis of Variance MeSH
- Self Administration MeSH
- Ketamine pharmacology toxicity MeSH
- Rats MeSH
- Locomotion drug effects MeSH
- Methamphetamine administration & dosage MeSH
- Methylazoxymethanol Acetate analogs & derivatives toxicity MeSH
- Disease Models, Animal MeSH
- Conditioning, Operant drug effects MeSH
- Rats, Sprague-Dawley MeSH
- Schizophrenia chemically induced drug therapy MeSH
- Central Nervous System Stimulants administration & dosage MeSH
- Dose-Response Relationship, Drug MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Ketamine MeSH
- Methamphetamine MeSH
- methylazoxymethanol MeSH Browser
- Methylazoxymethanol Acetate MeSH
- Central Nervous System Stimulants MeSH
Preventing relapse to drug abuse is one of the struggles faced by clinicians in order to treat patients with substance use disorders (DSM-5). There is a large body of clinical evidence suggesting differential characteristics of the disorder in men and women, which is in line with preclinical findings as well. The aim of this study was to assess differences in relapse-like behavior in methamphetamine (METH) seeking after a period of forced abstinence, which simulates the real clinical situation very well. Findings from such study might add new insights in gender differences in relapse mechanisms to previous studies, which employ a classical drug or cue-induced reinstatement procedure following the extinction training. Adult male and female Sprague-Dawley rats were used in IV self-administration procedure conducted in operant boxes using nose-poke operandi (Coulborn Instruments, USA). Active nose-poke resulted in activation of the infusion pump to deliver one intravenous infusion of METH (0.08 mg/kg). After baseline drug intake was established (maintenance phase), a period of forced abstinence was initiated and rats were kept singly in their home cages for 14 days. Finally, one reinstatement session in operant boxes was conducted. Females were found to self-administer significantly lower dose of METH. The relapse rate was assessed as a number of active nose-pokes during the reinstatement session, expressed as a percentage of active nose-poking during the maintenance phase. Females displayed approximately 300% of active nose-pokes compared to 50% in males. This indicates higher vulnerability to relapse of METH seeking behavior in female rats. This effect was detected in all females, independently of current phase of their estrous cycle. Therefore, this paradigm using operant drug self-administration and reinstatement of drug-seeking after forced abstinence model can be used for preclinical screening for potential new anti-relapse medications specific for women.
- Keywords
- Sprague-Dawley rats, forced abstinence, methamphetamine, reinstatement of drug-seeking behavior, sex/gender differences,
- Publication type
- Journal Article MeSH
Depression has been associated with drug consumption, including heavy or problematic cannabis use. According to an animal model of depression and substance use disorder comorbidity, we combined the olfactory bulbectomy (OBX) model of depression with intravenous drug self-administration procedure to verify whether depressive-like rats displayed altered voluntary intake of the CB1 receptor agonist WIN55,212-2 (WIN, 12.5 μg/kg/infusion). To this aim, olfactory-bulbectomized (OBX) and sham-operated (SHAM) Lister Hooded rats were allowed to self-administer WIN by lever-pressing under a continuous [fixed ratio 1 (FR-1)] schedule of reinforcement in 2 h daily sessions. Data showed that both OBX and SHAM rats developed stable WIN intake; yet, responses in OBX were constantly higher than in SHAM rats soon after the first week of training. In addition, OBX rats took significantly longer to extinguish the drug-seeking behavior after vehicle substitution. Acute pre-treatment with serotonin 5HT1B receptor agonist, CGS-12066B (2.5-10 mg/kg), did not significantly modify WIN intake in OBX and SHAM Lister Hooded rats. Furthermore, acute pre-treatment with CGS-12066B (10 and 15 mg/kg) did not alter responses in parallel groups of OBX and SHAM Sprague Dawley rats self-administering methamphetamine under higher (FR-2) reinforcement schedule with nose-poking as operandum. Finally, dopamine levels in the nucleus accumbens (NAc) of OBX rats did not increase in response to a WIN challenge, as in SHAM rats, indicating a dopaminergic dysfunction in bulbectomized rats. Altogether, our findings suggest that a depressive-like state may alter cannabinoid CB1 receptor agonist-induced brain reward function and that a dopaminergic rather than a 5-HT1B mechanism is likely to underlie enhanced WIN self-administration in OBX rats.
- Keywords
- WIN55212-2, cannabinoid, depression, dopamine, drug dependence, methamphetamine, olfactory bulbectomy, serotonin,
- Publication type
- Journal Article MeSH