Nejvíce citovaný článek - PubMed ID 22571657
Perspective of cyclin-dependent kinase 9 (CDK9) as a drug target
The identification of the essential role of cyclin-dependent kinases (CDKs) in the control of cell division has prompted the development of small-molecule CDK inhibitors as anticancer drugs. For many of these compounds, the precise mechanism of action in individual tumor types remains unclear as they simultaneously target different classes of CDKs - enzymes controlling the cell cycle progression as well as CDKs involved in the regulation of transcription. CDK inhibitors are also capable of activating p53 tumor suppressor in tumor cells retaining wild-type p53 gene by modulating MDM2 levels and activity. In the current study, we link, for the first time, CDK activity to the overexpression of the MDM4 (MDMX) oncogene in cancer cells. Small-molecule drugs targeting the CDK9 kinase, dinaciclib, flavopiridol, roscovitine, AT-7519, SNS-032, and DRB, diminished MDM4 levels and activated p53 in A375 melanoma and MCF7 breast carcinoma cells with only a limited effect on MDM2. These results suggest that MDM4, rather than MDM2, could be the primary transcriptional target of pharmacological CDK inhibitors in the p53 pathway. CDK9 inhibitor atuveciclib downregulated MDM4 and enhanced p53 activity induced by nutlin-3a, an inhibitor of p53-MDM2 interaction, and synergized with nutlin-3a in killing A375 melanoma cells. Furthermore, we found that human pluripotent stem cell lines express significant levels of MDM4, which are also maintained by CDK9 activity. In summary, we show that CDK9 activity is essential for the maintenance of high levels of MDM4 in human cells, and drugs targeting CDK9 might restore p53 tumor suppressor function in malignancies overexpressing MDM4.
- MeSH
- cyklin-dependentní kinasa 9 antagonisté a inhibitory metabolismus MeSH
- genetická transkripce MeSH
- imidazoly farmakologie MeSH
- inhibitory proteinkinas farmakologie MeSH
- lidé MeSH
- melanom genetika metabolismus patologie MeSH
- MFC-7 buňky MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory prsu genetika metabolismus patologie MeSH
- piperaziny farmakologie MeSH
- pluripotentní kmenové buňky metabolismus MeSH
- proteiny buněčného cyklu biosyntéza genetika metabolismus MeSH
- protoonkogenní proteiny c-mdm2 biosyntéza genetika metabolismus MeSH
- protoonkogenní proteiny biosyntéza genetika metabolismus MeSH
- roskovitin farmakologie MeSH
- sulfonamidy farmakologie MeSH
- synergismus léků MeSH
- transfekce MeSH
- triaziny farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- atuveciclib MeSH Prohlížeč
- CDK9 protein, human MeSH Prohlížeč
- Cdk9 protein, mouse MeSH Prohlížeč
- cyklin-dependentní kinasa 9 MeSH
- imidazoly MeSH
- inhibitory proteinkinas MeSH
- MDM2 protein, human MeSH Prohlížeč
- Mdm2 protein, mouse MeSH Prohlížeč
- MDM4 protein, human MeSH Prohlížeč
- Mdm4 protein, mouse MeSH Prohlížeč
- nutlin 3 MeSH Prohlížeč
- piperaziny MeSH
- proteiny buněčného cyklu MeSH
- protoonkogenní proteiny c-mdm2 MeSH
- protoonkogenní proteiny MeSH
- roskovitin MeSH
- sulfonamidy MeSH
- triaziny MeSH
Cyclin-dependent kinases (CDKs) are key regulators of both cell cycle progression and transcription. Since dysregulation of CDKs is a frequently occurring event driving tumorigenesis, CDKs have been tested extensively as targets for cancer therapy. Cyclin-dependent kinase 12 (CDK12) is a transcription-associated kinase which participates in various cellular processes, including DNA damage response, development and cellular differentiation, as well as splicing and pre-mRNA processing. CDK12 mutations and amplification have been recently reported in different types of malignancies, including loss-of-function mutations in high-grade serous ovarian carcinomas, and that has led to assumption that CDK12 is a tumor suppressor. On the contrary, CDK12 overexpression in other tumors suggests the possibility that CDK12 has oncogenic properties, similarly to other transcription-associated kinases. In this review, we discuss current knowledge concerning the role of CDK12 in ovarian and breast tumorigenesis and the potential for chemical inhibitors of CDK12 in future cancer treatment.
- Klíčová slova
- CDK12, Dinaciclib, Oncogene, RNA pol II, Suppressor, THZ531,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH