Most cited article - PubMed ID 22673307
Tetracycline resistance and presence of tetracycline resistance determinants tet(V) and tap in rapidly growing mycobacteria from agricultural soils and clinical isolates
Lignocellulose biomass has recently been considered a cost-effective and renewable energy source within circular economy management. Cellulases are important key enzymes for simple, fast, and clean biomass decomposition. The intestinal tract of millipedes is the environment which can provide promising microbial strains with cellulolytic potential. In the present study, we used the tropical millipede Telodeinopus aoutii as an experimental organism. Within a feeding test in which millipedes were fed with oak and maple leaf litter, we focused on isolating culturable cellulolytic microbiota from the millipede gut. Several growth media selecting for actinobacteria, bacteria, and fungi have been used to cultivate microbial strains with cellulolytic activities. Our results showed that oak-fed millipedes provided a higher number of culturable bacteria and a more diversified microbial community than maple-fed ones. The screening for cellulolytic activity using Congo red revealed that about 30% of bacterial and fungal phylotypes isolated from the gut content of T. aoutii, produced active cellulases in vitro. Actinobacteria Streptomyces and Kitasatospora were the most active cellulolytic genera on Congo red test. In contrast, fungi Aspergillus, Penicillium, Cheatomium, Clonostachys, and Trichoderma showed the highest protein-specific cellulase activity quantified by 4-Methylumbelliferyl β-D-cellobioside (4-MUC). Our findings provide a basis for future research on the enzyme activities of microbes isolated from the digestive tracts of invertebrates and their biocatalytic role in biomass degradation.
- Keywords
- Actinobacteria, Cellulase, Diplopoda, Fungi, Intestine, Invertebrates,
- MeSH
- Bacteria genetics metabolism MeSH
- Cellulase * metabolism MeSH
- Cellulases * metabolism MeSH
- Congo Red MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cellulase * MeSH
- Cellulases * MeSH
- Congo Red MeSH
Mycobacteria are a unique group of microorganisms. They are characterised by exceptional adaptability and durability. They are capable of colonisation and survival even in very unfavourable conditions. In addition to the well-known obligate human pathogens, Mycobacterium tuberculosis and M. leprae, more than 200 other species have been described. Most of them form a natural part of the microflora of the external environment and thrive in aquatic and soil environments especially. For many of the mycobacterial species associated with human disease, their natural source has not yet been identified. From an ecological point of view, mycobacteria are saprophytes, and their application in human and animal diseases is opportunistic. Most cases of human disease from saprophytic mycobacteria occur in immunocompromised individuals. This adaptability and resilience to environmental pressures makes treatment of mycobacterial diseases (most often sapronoses and less often zoonoses) and permanent eradication of mycobacteria from the environment very difficult. Saprophytic mycobacterial diseases (sapronoses) are chronic and recurrent due to the fact of repeated endogenous or exogenous re-exposure. Therefore, knowledge regarding their occurrence in soil and dust would aid in the prevention of saprophytic mycobacterioses. In conjunction, their presence and ecological significance in the environment can be revealed.
- Keywords
- PICA practices, antidiarrheal, earth-eating, environmental saprophytic mycobacteria, feeding and eating disorders, geochemistry, geophagia, mud, potentially pathogenic mycobacteria, saprophytic mycobacteria, saprozoic mycobacteria, soil consumption, soil exposure, trace elements deficiency,
- Publication type
- Journal Article MeSH
- Review MeSH
A combined approach, comprising PCR screening and genome mining, was used to unravel the diversity and phylogeny of genes encoding 5-aminolevulinic acid synthases (ALASs, hemA gene products) in streptomycetes-related strains. In actinomycetes, these genes were believed to be directly connected with the production of secondary metabolites carrying the C5N unit, 2-amino-3-hydroxycyclopent-2-enone, with biological activities making them attractive for future use in medicine and agriculture. Unlike "classical" primary metabolism ALAS, the C5N unit-forming cyclizing ALAS (cALAS) catalyses intramolecular cyclization of nascent 5-aminolevulinate. Specific amino acid sequence changes can be traced by comparison of "classical" ALASs against cALASs. PCR screening revealed 226 hemA gene-carrying strains from 1,500 tested, with 87% putatively encoding cALAS. Phylogenetic analysis of the hemA homologs revealed strain clustering according to putative type of metabolic product, which could be used to select producers of specific C5N compound classes. Supporting information was acquired through analysis of actinomycete genomic sequence data available in GenBank and further genetic or metabolic characterization of selected strains. Comparison of 16S rRNA taxonomic identification and BOX-PCR profiles provided evidence for numerous horizontal gene transfers of biosynthetic genes or gene clusters within actinomycete populations and even from non-actinomycete organisms. Our results underline the importance of environmental and evolutionary data in the design of efficient techniques for identification of novel producers.
- Keywords
- 5-aminolevulinate synthase, C5N unit, Streptomyces, gene evolution, genetic screening, horizontal gene transfer, secondary metabolites,
- Publication type
- Journal Article MeSH
Survival of earthworms in the environment depends on their ability to recognize and eliminate potential pathogens. This work is aimed to compare the innate defense mechanisms of two closely related earthworm species, Eisenia andrei and Eisenia fetida, that inhabit substantially different ecological niches. While E. andrei lives in a compost and manure, E. fetida can be found in the litter layer in forests. Therefore, the influence of environment-specific microbiota on the immune response of both species was followed. Firstly, a reliable method to discern between E. andrei and E. fetida based on species-specific primers for cytochrome c oxidase I (COI) and stringent PCR conditions was developed. Secondly, to analyze the immunological profile in both earthworm species, the activity and expression of lysozyme, pattern recognition protein CCF, and antimicrobial proteins with hemolytic function, fetidin and lysenins, have been assessed. Whereas, CCF and lysozyme showed only slight differences in the expression and activity, fetidin/lysenins expression as well as the hemolytic activity was considerably higher in E. andrei as compared to E. fetida. The expression of fetidin/lysenins in E. fetida was not affected upon the challenge with compost microbiota, suggesting more substantial changes in the regulation of the gene expression. Genomic DNA analyses revealed significantly higher level of fetidin/lysenins (determined using universal primer pairs) in E. andrei compared to E. fetida. It can be hypothesized that E. andrei colonizing compost as a new habitat acquired an evolutionary selection advantage resulting in a higher expression of antimicrobial proteins.
- MeSH
- Bacteria classification genetics immunology MeSH
- Toxins, Biological genetics immunology MeSH
- Cytotoxicity, Immunologic genetics immunology MeSH
- Species Specificity MeSH
- Ecosystem * MeSH
- Gene Expression MeSH
- Hemolysis genetics immunology MeSH
- Manure microbiology parasitology MeSH
- Molecular Sequence Data MeSH
- Muramidase genetics immunology MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Oligochaeta classification genetics immunology MeSH
- Reverse Transcriptase Polymerase Chain Reaction MeSH
- Immunity, Innate genetics immunology MeSH
- Proteins genetics immunology MeSH
- Soil Microbiology MeSH
- Electron Transport Complex IV genetics MeSH
- Base Sequence MeSH
- Sequence Analysis, DNA MeSH
- Sequence Homology, Nucleic Acid MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Toxins, Biological MeSH
- fetidin MeSH Browser
- Manure MeSH
- lysenin MeSH Browser
- Muramidase MeSH
- Proteins MeSH
- Electron Transport Complex IV MeSH